Advanced search
Start date
Betweenand


Evaluation of cultured human melanocytes exposed to carbaryl insecticide and solar radiation

Full text
Author(s):
Bianca Ferrucio
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Silvia Berlanga de Moraes Barros; Cristiana Leslie Corrêa; Miriam Galvonas Jasiulionis Leon; Fernando Salvador Moreno
Advisor: Silvia Berlanga de Moraes Barros; Silvya Stuchi Maria Engler
Abstract

Carbaryl (1-naphthyl-methylcarbamate), a broad spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, which is known to be the main etiologic factor for skin carcinogenesis. Although comprehensive and well designed, the epidemiological study is not sufficient to characterize the direct contribution of the insecticide and solar radiation in melanomagenesis. Several studies have explored the synergistic effect of certain chemicals with UV radiation, increasing its deleterious effects on the skin, possibly contributing to tumor development. We hypothesized that Carbaryl exposure associated with UV solar radiation may induce melanocyte transformation. This study aims to characterize human melanocytes after individual or combined exposure to Carbaryl (100uM) and solar radiation (375 mJ/ cm2). In a microarray analysis, Carbaryl, but not solar radiation, induced an important oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of MiTF, the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Moreover, both Carbaryl and solar UV induced a gene response that suggests DNA damage and cell cycle alteration. The expression of genes in these categories, such as p21 and BRCA1/2, was notably more intense in the combined treatment group in an additive manner and in fact, flow cytometry assays demonstrated cell cycle arrest in S phase, reduced apoptosis induction and faster induction of CPD lesions in this experimental group. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation (AU)

FAPESP's process: 10/17891-7 - Evaluation of the carbaryl influence on the effects of UV radiation in human melanocytes culture
Grantee:Bianca Ferrucio
Support Opportunities: Scholarships in Brazil - Doctorate