Advanced search
Start date
Betweenand


The use of sodium trimetaphosphate for matrix metalloproteinase inhibition, remineralization and bonding to dentin

Full text
Author(s):
Rafael Simões Gonçalves
Total Authors: 1
Document type: Doctoral Thesis
Press: Bauru.
Institution: Universidade de São Paulo (USP). Faculdade de Odontologia de Bauru (FOB/SDB)
Defense date:
Examining board members:
Linda Wang; Juliana Fraga Soares Bombonatti; André Luiz Fraga Briso; Marcelo Giannini
Advisor: Linda Wang
Abstract

The adhesive process to dentin substrate depends on the condition determined by the combined action of the mineral loss and the endogenous enzymes activity. Thus, considering a more complete therapeutic approach, sodium trimetaphosphate (STMP) may be a novel strategy that conciliates the remineralization potential to the promotion of dentin strengthening and its stability, possibly directing mineral nucleation and controlling the rate of biodegradation. In this study, the effect of STMP was evaluated in 2 studies. In study 1, different concentrations of STMP (0.5, 1.5, 3.5 and 5%) were investigated to assess their anti-proteolytic capacity on human purified MMPs-2 and -9 by zymography. Afterwards, only the concentrations (1.5, 3.5 and 5%) that showed total inhibition of both MMPs were used to evaluate their remineralizing capacity in dentin substrate submitted to artificial cariogenic challenge, through surface hardness (SH) and cross-sectional hardness (CSH). In study 2, based on the previous results, the capacity of the 1.5% STMP associated or not with NaF or Ca(OH)2 solutions in improving the dentin bond strength of a universal adhesive system was evaluated by the microtensile test . Thus, these studies suggest that 1.5% STMP is an effective inhibitor of collagen degradation mediated by purified human MMPs-2 and -9. In addition, demineralized and treated dentin with 1.5% STMP supplemented with Ca(OH)2 may induce remineralization. Thus, the use of STMP can be introduced as a new strategy that combines enzymatic inhibition and remineralization potential, reestablishing favorable conditions to affected dentin. These evidences support perspectives of therapies to restructure dentin and propose feasible and promising clinical strategies. (AU)

FAPESP's process: 15/02559-0 - Use of TMP on the inhibition of dentin endogen enzymes and on biomimetization of demineralized dentin substrate
Grantee:Rafael Simões Gonçalves
Support Opportunities: Scholarships in Brazil - Doctorate