Advanced search
Start date

Structural and functional characterization of the protein UDP-glucose pyrophosphorylase involved in the biosynthesis and accumulation of sucrose in sugarcane

Full text
José Sérgio de Macedo Soares
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Marcelo Menossi; Marcelo Ehlers Loureiro; Carlos Alberto Labate; Tercilio Calsa Junior; Helaine Carrer
Advisor: Marcelo Menossi; Ricardo Aparicio

The sugarcane agribusiness generates around R$ 40 billion per year in Brazil, while the entire supply chain of sugarcane is responsible for 1.5% of the gross domestic product (GDP). Sugarcane productivity is mainly determined by the accumulation of sucrose in the culms. However, the synthesis and accumulation of sucrose in plants is the result of an extensive network. When sucrose is unloaded in the storage parenchyma cells, it is metabolized by different enzymes, and UDP-glucose pyrophosphorylase (UGPase) is one of the enzymes responsible for the synthesis of sucrose in sugarcane. The objective of this work was to gain insights on the ScUGPase-1 expression pattern and the regulatory mechanisms that control protein activity. ScUGPase-1 transcript levels were negatively correlated with sucrose content in the internodes and only a slight difference in the expression pattern was observed between two cultivars that differ in their sucrose content. The intracellular localization of ScUGPase-1 indicated association with membranes in both leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo in the soluble and membrane fractions from leaves, but not from internodes. In vitro, the purified recombinant enzyme interacted with recombinant protein casein kinase 1 and its activity was affected by redox modification. To complement the redox data, Small-Angle X-ray Scattering provided the first structural model of the dimer of sugarcane UGPase in solution, highlighting that the dimer interface is located at the C-terminal. The data indicated that phosphorylation, protein interaction and oligomerization may play an important role in the regulation of ScUGPase-1 activity (AU)

FAPESP's process: 08/06767-3 - Structural and functional characterization of enzymes involved in sucrose biosynthesis and accumulation in Sugarcane
Grantee:José Sérgio de Macedo Soares
Support Opportunities: Scholarships in Brazil - Doctorate