Advanced search
Start date
Betweenand


Effects of short and long-term ethanol consumption on mitochondrial functions: studies in Wistar rats (Rattus novergicus)

Full text
Author(s):
Felipe Gustavo Ravagnani
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
Anibal Eugenio Vercesi; Antonio Galina Filho; Jose Roberto Meyer Fernandes; Nicola Amanda Conran Zorzetto; Cecília Amélia Fazzio Escanhoela
Advisor: Anibal Eugenio Vercesi; Nadja Cristhina de Souza Pinto
Abstract

The number of people suffering from alcoholism has increased significantly over the last century. As a result, costs associated with treating the addiction itself as well as the associated pathologies have also increased, such that this is considered as public health issue. Furthermore, the molecular events leading to several of these diseases are not yet clearly understood. Hepatic tissue is the most affected by alcohol, and mitochondria have been suggested to be a crucial target in alcohol-induced liver toxicity. Thus, the aim of our study was to investigate how ethanol consumption affects the redox state and mitochondrial metabolism in the liver. Young adult and middle-aged male Wistar rats were given a 25 % (v/v) ethanol solution as the only source of drinking water. Control groups received water only. Liver mitochondria were isolated using standard techniques. Food and water intake was significantly lower in alcohol-drinking rats, resulting in lower weight gain during the treatment regimes. Mitochondria from the alcohol-drinking group had lower respiration under levels in basal condition, when energized by substrates feeding electrons into complexes I and IV. Cytochrome c oxidase activity and protein levels were lower in the alcohol group as well. Additionally, regardless of the length of the treatment, liver mitochondria from the alcohol-treated animals were more resistant to Ca2+-induced mitochondrial permeability transition (MPT), when compared to mitochondria from control animals. This effect was abrogated by oxidizing agents of pyridine nucleotides (acetoacetate, diamide or tert butylhydroperoxide) or in uncoupled mitochondria. We also found that liver mitochondria from the alcohol-drinking rats had a more reduced pyridine nucleotide pool and higher NAD(P)H/NAD(P)+ ratios. In addition, Nampt (an enzyme of the NAD+ synthetic pathway) protein levels did not differ after alcohol consumption. Accordingly, the calcium retention capacity of the isolated mitochondria, which is dependent upon intramitochondrial redox state, was higher in the alcohol group. On the other hand, levels of reactive oxygen species showed no differences between the control and alcohol groups, both in mitochondria and in splenic lymphocytes. Glutathione peroxidase activity and the amounts of GSH and GSSG were also not changed. However, mitochondrial DNA levels were decreased in the short term treatments, but tended to go back up to normal levels in the chronic treatments, indicating an adaptative response to ethanol-induced injury. Together, our results indicate that ethanol consumption modulates the mitochondrial redox state and the antioxidant systems, protecting against Ca2+-induced mitochondrial pore transition permeability opening. The presence of this xenobiotic can significantly change the levels of reduced NADP, the ultimate reducing agent in the gluthatione reductase/peroxidase system that detoxifies H2O2 in the mitochondrial matrix. In addition, the adaptative response to ethanol, seen in mitochondrial DNA, may contribute to further understand the mechanisms related to lesions in biomolecules and the initial steps that preceed cell death, alcoholic hepatitis or carcinogenic process in hepatic tissue exposed chronically to ethanol (AU)