Advanced search
Start date
Betweenand


Controlled release of oxytetracycline encapsulated in alginate/chitosan matrix coated with Acril-EZE® MP in fluidized bed

Full text
Author(s):
Sirlene Adriana Kleinubing
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Lúcia Helena Innocentini Mei; Ana Rita Morales; Almenara de Souza Fonseca Silva
Advisor: Lúcia Helena Innocentini Mei
Abstract

The present work focused on the development of microparticles based on natural polymers for use in gastro-release systems, where drug-sensitive gastric medium may follow intact until its enteric controlled delivery. The oxytetracycline (OTC) was selected in this study, since it is an antibiotic that, when ingested, may cause irritation of the gastric mucosa, limiting its use in conventional treatment. The method chosen to prepare microparticles was the complex coacervation in a single stage. Natural polymers chosen were the polianionic alginate and the policationic chitosan because they are biocompatible, nontoxic and easy degradation. Morphological characterizations of the surface and interior of the microparticles, with and without drug, were made by scanning electron microscopy (SEM). The distribution of OTC in the microparticles was determined by multiphoton confocal microscopy, taking the advantage of the inherent fluorescence of OTC. By infrared spectroscopy with Fourier Transform - FTIR it was possible to follow chemical identities of each component and the interaction between the biopolymers chitosan and alginate by the displacement of the absorption bands of each biopolymer. The modulation of OTC release from microparticles was made by coating these microparticles in fluidized bed with a polymer dispersion based on acryl-EZE ® MP, a synthetic anionic polymer gastro-resistant. The kinetics of in vitro release of OTC was performed by spectrophotometric method, in acid dissolution medium buffered medium pH6,8 to study the both environment of interest, ie gastric and intestinal. By confocal laser microscopy it was verified that the encapsulation of OTC was quite efficient. A solution of acryl-EZE ® MP was adequate to study the modulation of microencapsulated controlled release of OTC in the matrix chosen. Kinetic studies showed rapid release of OTC at the begining of the experiments in acidic medium, for uncoated microparticles. After coating with acryl-EZE ® PM, 50% mass gain, the suppression of OTC "burst effect", in the range of two hours, was significantly reduced, meaning the material has a great potential to avoid the gastric resistance desired. In basic medium the release was gradual, and was completed in five hours, for both coated and uncoated microparticles. Thus, the system studied showed a great potential for application to short-term delivery systems for OTC in vivo, subject to further studies, also aiming its commercial viability (AU)

FAPESP's process: 11/04099-6 - Controlled release of oxytetracycline trapped in a matrix of alginate/chitosan coated with Eudragit fluidized
Grantee:Sirlene Adriana Kleinübing
Support Opportunities: Scholarships in Brazil - Master