Advanced search
Start date
Betweenand


Semiconductor optical amplifiers with multi-contacts for optical power saturation control

Full text
Author(s):
Felipe Vallini
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Newton Cesário Frateschi; Eunezio Antonio de Souza; Flávio Caldas da Cruz
Advisor: Newton Cesário Frateschi
Abstract

The dramatic increase in information density required for nowadays telecom systems demands constant improvements in optical communication technology. In this technology the components used for optical amplification are of great importance, particularly the semiconductor optical amplifiers for they provide high level of miniaturization and reduction in power consumption. Considering these components, after optical modulation, before detection and analog applications requires high linearity of the amplifiers. On the other hand, amplifiers in deep saturation (highly non-linear) yield big robustness and complexity reduction (and cost reductions) for hybrid integration. Also, non-linearity may be of interest for wavelength conversion, switching and pulse compression or dilatation. Therefore, the two extreme operation conditions, unsaturated or in deep saturation are of interest. Since the gain saturation of an amplifier depends on their carrier density, we propose the development of amplifiers with multi-contacts for non-homogeneous injection of carriers along the waveguide of the device. Based on this idea we present the development of multi-contact amplifiers in this dissertation. We first present the modeling of the device using semi-empirical parameters obtained from the fabrication of semiconductor lasers that uses the same epitaxial structures. Subsequently, we fabricated single-contact amplifiers and multi-contacts semiconductor amplifiers, the main subject of this work. The characterization of the devices was realized and good qualitative concordance with our simulations is shown. A linearity control of the amplification for DC signals was achieved for relatively low injection current in both cavity in a -7 to 7 dBm input power range (AU)

FAPESP's process: 07/53366-1 - Semiconductor optical amplifiers with multi-contacts for saturation power control
Grantee:Felipe Vallini
Support Opportunities: Scholarships in Brazil - Master