Advanced search
Start date
Betweenand


Regulation of the fat body activity of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae)

Full text
Author(s):
Gabriela Salvador
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Fernando Luis Cônsoli; Odair Aparecido Fernandes; Celso Omoto
Advisor: Fernando Luis Cônsoli
Abstract

During evolution, parasitoids evolved the ability to manipulate the physiology of their hosts. Among the common effects of the parasitism, hosts may show an alteration of their hemolymph composition (parasitoid nutritional environment), endocrine and immune systems, and protein synthesis activity of host tissues. The fat body is the main organ of protein synthesis of insects and the manipulation of its activity is key for parasitoid successful development. The goal of this study was to evaluate the effects of parasitization by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) on the gene expression activity of the fat body of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), to provide additional information on key regulatory pathways to control host metabolism as a step forward for the development of new control strategies based on parasitoid host regulation strategies. Fifth-instars of D. saccharalis at the head slippage stage were isolated and separated in two different groups. One group was individually parasitized by C. flavipes, and the other was kept as control. The fat bodies of parasitized and non-parasitized hosts were collected 1, 3, 5, 7 and 9 days after parasitism, subjected to RNA extraction, cDNA synthesis and differential gene expression analysis by DD-PCR (Differential Display PCR). Transcripts that were differentially expressed between treatments were selected, cloned and sequenced. The obtained sequences were compared to those available at the NCBi data bank. C. flavipes up-regulated the expression of a transcript enconding for a storage protein soon after parasitization. The storage proteins, or hexamerins, are essential for insect development, acting as a reservoir of aminoacids and nitrogen to be used by the pupa and adults during metamorphosis and reproduction. Due to the importance of these proteins, the cDNA encoding this protein was characterized by the amplification of 5 and 3 terminal ends. The complete cDNA has 2,353 bp and the deduced aminoacid sequence is 745 aa long. The methionine and aromatic aminoacids content, as well as phylogenetic analysis, indicated that the hexamerin identified in D. saccharalis is a methionine-rich protein. The identification and characterization of the hexamerin identified in D. saccharalis is the first step towards to the development of new control strategies based on host-parasitoid interactions. (AU)