Advanced search
Start date
Betweenand


In vitro evaluation of the morphology and the bond strength of adhesives to sound and artificially eroded human dentin irradiated with Er:YAG and Er,Cr:YSGG laser

Full text
Author(s):
Thaysa Monteiro Ramos
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Odontologia (FO/SDO)
Defense date:
Examining board members:
Carlos de Paula Eduardo; Patricia Moreira de Freitas; Karen Müller Ramalho
Advisor: Carlos de Paula Eduardo
Abstract

Dental erosion can cause complex histological changes in dentin and, despite the increase in its incidence during the last decade, limited information is available regarding adhesion to eroded dentin. With improvements in technology and due to the fact that the erbium lasers have high affinity to water and hydroxyapatite, the use of laser can consist on an alternative for the treatment of dentin surface before adhesive procedures. The aim of this in vitro study was to evaluate the effect of different surface treatments (diamond bur, Er:YAG laser 2.94 m, 60 mJ, 2 Hz, 0.2 W, 19.3 J/cm2 - and Er,Cr:YSGG laser 2.78 m, 50 mJ, 30 Hz, 1.5 W, 4.5 J/cm2) prior to restorative treatment, in sound and artificially eroded human dentin. Half of the samples was submitted to the erosive cycling, which was performed by immersion in 0.05 M citric acid (pH 2.3, 10 min, 6x/day) and in supersaturated solution (pH 7.0, 1h, between acid attacks), during 5 days. In phase 1, 32 dentin fragments were randomly divided into 8 groups (n = 4). The analysis of surface morphology of both sound and eroded dentin was performed by Scanning Electron Microscopy (SEM), after the different surface treatments. In phase 2, 192 human third molars were randomly divided into 2 groups (sound and eroded dentin) and 8 subgroups (n=12) to evaluate the bond strength between the treated surfaces and composite resin, with two adhesive systems (self-etching and total-etching) by means of the microtensile bond strength (TBS) test and fracture pattern analysis. For the microtensile bond strength test, blocks of composite resin were bonded to the samples and, after 24 h-storage in distilled/deionized water (37°C), stick-shapped samples were obtained and submitted to TBS test in a universal testing machine (0.5 mm/min). The fracture pattern was performed with an optical microscopy (40x) and the evaluations of the electromicrographs were made under a descriptive mode. The bond strength values (MPa) were analyzed by two-way ANOVA and Tukey tests ( = 0.05). In sound dentin, for the control group, both self-etching (54.69 ± 7.8 MPa) and total-etching adhesive system (47.36 ± 9.3 MPa) showed significantly higher values than all other groups (p<0.05), even though they differ from each other. However, in eroded dentin groups, the self-etching on the samples treated with the Er,Cr:YSGG laser presented the highest mean (28.3 ± 9.2 MPa), which was statistically significant higher than all the other treatments (p<0.05). Based on the irradiation parameters considered for this study, it can be concluded that in healthy dentin, the surface treatment with Er:YAG and Er,Cr:YSGG irradiation showed bonding values lower than the control group, but they presented satisfactory results. However, in eroded dentin, the use of Er,Cr:YSGG laser, associated with the self-etching adhesive system, promoted positive effect on adhesion to composite resin. (AU)

FAPESP's process: 11/02925-6 - In vitro study of the morphology and the microtensile bond strength of resin to Er:YAG laser irradiated human dentine and submitted to the erosive challenge
Grantee:Thaysa Monteiro Ramos
Support Opportunities: Scholarships in Brazil - Master