Advanced search
Start date
Betweenand


Electrochemical study and development of new electroanalytical methodologies for the determination of tricyclic antidepressants and neurotransmiters

Full text
Author(s):
Renata Alves de Toledo
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Luiz Henrique Mazo; Margarida Juri Saeki; Mauro Coelho dos Santos; Carlos Manoel Pedro Vaz; Maria Valnice Boldrin Zanoni
Advisor: Luiz Henrique Mazo
Abstract

In this work, the electrochemical and quantum-chemical studies are discussed, as well as the development of analytical methodologies for the imipramine tricyclic antidepressant and for the dopamine neurotransmitter. Experiments were performed in 0.10 mol L-1 Britton Robinson (BR) buffer solution at the best analytical response pH for the mentioned compounds. From the electrochemical parameters extracted of cyclic and square wave voltammetric techniques, using a graphite-polyurethane electrode (GPU), it was possible to diagnose the reactions reversible degree, the presence or not of adsorptions processes and also the number of protons and electrons involved in the electrochemical reactions. Concerning to the quantum-chemical calculations, the graphic representation of HOMO (Highest Occupied Molecular Orbital) and the calculation of the atomic charge derived from electrostatic potential provided an estimation of the probable oxidation sites of the compounds. The results indicated that the oxidation reaction of imipramine is reversible and dependent of the reagent adsorption at the electrode surface, occuring the formation of a dimer in a chemical step after the transference of two electrons and one proton. The probable oxidation site of the molecule includes the nitrogen atom region of the ring, emphasizing that after the transference of the two electrons there is a deslocalization of the charges though the aromatic ring, suggesting the formation of the dimeric specie at postion 2. At the same time, experiments of controlled potential electrolysis were carried out in order to generate reaction products to be analysed by electrospray ionization mass espectrosmmetry (ESI-MS). From the results obtained by voltammetric techniques, by quantum-chemical calculations and by mass spectroscopy, it was suggested a probable mechanism for the imipramine oxidation in the studied conditions. The analytical methodology developed for imipramine is fast, sensible and accurate for routine analysis in Tofranil® tablets. The reached sensibility also allowed the direct analysis of therapeutical plasmatic concentrations of the antidepressant and its methabolic (desipramine) in synthetic human serum sample. However, the selectivity of the methodology was compromised by the peak potentials proximity of the dimers formed after the oxidation of imipramine (-41 mV) and of desipramine (23 mV). The application of a deconvolution mathematical xviii method (Origin 6.0) permitted the simultaneous analysis of imipramine and desipramine. On the other hand, dopamine is oxidized to dopamine ortho-quinone in a reversible process with the adsorption of reagent and product at the electrode surface. The process involves the participation of two electrons and two protons. The analytical methodology developed for dopamine was applied in the routine analysis in Revivan® injections with good accuracy and precision. Besides that, the sensitivity and the selectivity reached by the methodology resulted in the determination of dopamine in synthetic cerebrospinal fluid. The separation of the oxidation peaks of dopamine (Ep = 200 mV) and of ascorbic acid (Ep = 40 mV) is probably due to the favorable electrostatic interactions between the GPU electrode surface and the ascorbate anion. In general way, the obtained results were very satisfatory for the desirable determinations, concluding that the GPU electrode is a promissing material for the analysis of biological interest molecules. (AU)

FAPESP's process: 01/14629-0 - Electrochemical study and development of new electroanalytical methodologies for the determination of tricyclic antidepressants and neurotransmitters
Grantee:Renata Alves de Toledo
Support Opportunities: Scholarships in Brazil - Doctorate