Advanced search
Start date
Betweenand


Comparative analysis of the biochemistry and biology of human and mouse galectin

Full text
Author(s):
Amanda Cristina Trabuco
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Marcelo Dias Baruffi; Emerson Soares Bernardes; Antonio Caliri
Advisor: Marcelo Dias Baruffi
Abstract

Galectin-1 (Gal-1) is a homodimeric and multifunctional lectin that recognizes and binds to beta-galactoside by a carbohydrate recognition domain (CRD). Human Gal-1 (hGal-1) and mouse Gal-1 (mGal-1) are 88.15% identical, and although there are no mutations in key amino acids within the CRD, there are differences in the amino acids sequence near the CRD. Given the potential of these differences to alter overall structure and function, and the common utilization of murine models to study Gal-1 function, we sought to directly compare key biochemical features of hGal and mGal-1. Thus, we performed crystallization and structure determination assays of mGal-1, and determined the carbohydrate binding specificy of mGal-1 and hGal-1 using a glycan array and using hemagglutination assay. We also evaluated the ability of both Gal-1 to induce exposure of phosphatidylserine (PS) in activated neutrophils from the bone marrow of normal or ?-2 integrin (Mac-1) deficient mice, in order to investigate the involvement of Gal-1/Mac-1 interaction in this process. To accomplish this, homogeneous and active preparations of hGal-1 and mGal-1 were used in the study. mGal-1 crystals were obtained in 20% polyethylene glycol 3350 and 0.2 M ammonium fluoride. Data from X-ray diffraction were collected and processed, yielding a structure with a final resolution of 2.4 Å. The amino acid substitutions found between mGal-1 and hGaI-1 are detected on the solvent-exposed surfaces where the CRDs are located and not on the proteins dimerization surfaces. A comparative structural analysis between mGal-1 and hGal-1 shows that these amino acid substitutions confer to mGal-1 a greater number of ionizable residues, polar character, appearance of the acid regions clustered, and a slight increase of volume distribution. In hemagglutination assays, twice the concentration of mGal-1 was required to cause equivalent agglutination of human, sheep or rabbit erythrocytes as hGal-1. Glycan array analysis demonstrated that both galectins have affinity for branched glycans containing terminal galactose residues. However, hGal-1 appeared to display higher levels of binding that mGal-1. Preparations of mGal-1 and hGal-1 induced similar levels of PS exposure on normal or Mac-1 deficient neutrophils, suggesting that the interaction Gal-1/Mac-1 is not involved in this process. Thus, hGal-1 and mGal-1 appear to possess considerable differences in glycan recognition that likely reflects subtle difference in amino acid sequence. Furthermore, the interaction Gal-1/Mac-1 do not appear to participate in this PS exposure process, which suggest that other Gal-1 receptors are likely important in this process. (AU)

FAPESP's process: 11/01380-6 - Comparative analysis of the biochemistry and biology of human and mouse galectin-1
Grantee:Amanda Cristina Trabuco
Support Opportunities: Scholarships in Brazil - Master