Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

A two-phase solver for complex fluids: Studies of the Weissenberg effect

Full text
Author(s):
Figueiredo, R. A. [1] ; Oishi, C. M. [2] ; Afonso, A. M. [3] ; Tasso, I. V. M. [1] ; Cuminato, J. A. [1]
Total Authors: 5
Affiliation:
[1] Univ Sao Paulo, ICMC, Ave Trabalhador Sao Carlense 400, Sao Carlos, SP - Brazil
[2] Univ Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP - Brazil
[3] Univ Porto, Fac Engn, CEFT, Rua Dr Roberto Frias S-N, P-4200465 Oporto - Portugal
Total Affiliations: 3
Document type: Journal article
Source: INTERNATIONAL JOURNAL OF MULTIPHASE FLOW; v. 84, p. 98-115, SEP 2016.
Web of Science Citations: 3
Abstract

In this work a new two-phase solver is presented and described, with a particular interest in the solution of highly elastic flows of viscoelastic fluids. The proposed code is based on a combination of classical Volume-of-Fluid and Continuum Surface Force methods, along with a generic kernel-conformation tensor transformation to represent the rheological characteristics of the (multi)-fluid phases. Benchmark test problems are solved in order to assess the numerical accuracy of distinct levels of physical complexities; such as the interface representation, the influence of advection schemes, the influence of surface tension and the role of fluid rheology. In order to demonstrate the new features and capabilities of the solver in simulating of complex fluids in transient regime, we have performed a set of simulations for the problem of a rotating rod inserted into a container with a viscoelastic fluid, known as the Weissenberg or Rod Climbing effect. Firstly, our results are compared with numerical and experimental data from the literature for low angular velocities. Secondly, we have presented results obtained for high angular velocities (high elasticity) using the Oldroyd-B model which displayed very, elevated climbing heights. Furthermore, above a critical value for the angular velocity, it was observed the onset of elastic instabilities driven by the combination of elastic stresses, interfacial curvature and secondary flows, that to the authors best knowledge, were not yet reported in the literature. (C) 2016 Elsevier Ltd. All rights reserved. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:José Alberto Cuminato
Support type: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 11/09194-7 - Numerical simulation of the Weissenberg effect
Grantee:Rafael Alves Figueiredo
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 15/04548-6 - Numerical simulation of viscoelastic two-phase flows
Grantee:Rafael Alves Figueiredo
Support type: Scholarships abroad - Research Internship - Doctorate