Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice

Full text
Author(s):
Guizoni, Daniele M. [1] ; Dorighello, Gabriel G. [1] ; Oliveira, Helena C. F. [1] ; Delbin, Maria A. [1] ; Krieger, Marta H. [1] ; Davel, Ana P. [1]
Total Authors: 6
Affiliation:
[1] Univ Campinas UNICAMP, Inst Biol, Dept Struct & Funct Biol, POB 6109, Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: JOURNAL OF TRANSLATIONAL MEDICINE; v. 14, JUL 19 2016.
Web of Science Citations: 12
Abstract

Background: Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. Aerobic exercise training (AET) has been demonstrated to ameliorate atherosclerotic lesions and oxidative stress in advanced atherosclerosis. However, whether AET protects against the early mechanisms of endothelial dysfunction in familial hypercholesterolemia remains unclear. This study investigated the effects of AET on endothelial dysfunction and vascular redox status in the aortas of LDL receptor knockout mice (LDLr-/-), a genetic model of familial hypercholesterolemia. Methods: Twelve-week-old C57BL/6J (WT) and LDLr-/- mice were divided into sedentary and exercised (AET on a treadmill 1 h/5 x per week) groups for 4 weeks. Changes in lipid profiles, endothelial function, and aortic NO, H2O2 and superoxide production were examined. Results: Total cholesterol and triglycerides were increased in sedentary and exercised LDLr-/- mice. Endothelium-dependent relaxation induced by acetylcholine was impaired in aortas of sedentary LDLr-/- mice but not in the exercised group. Inhibition of NO synthase (NOS) activity or H2O2 decomposition by catalase abolished the differences in the acetylcholine response between the animals. No changes were noted in the relaxation response induced by NO donor sodium nitroprusside or H2O2. Neuronal NOS expression and endothelial NOS phosphorylation (Ser1177), as well as NO and H2O2 production, were reduced in aortas of sedentary LDLr-/- mice and restored by AET. Incubation with apocynin increased acetylcholine-induced relaxation in sedentary, but not exercised LDLr-/- mice, suggesting a minor participation of NADPH oxidase in the endothelium-dependent relaxation after AET. Consistent with these findings, Nox2 expression and superoxide production were reduced in the aortas of exercised compared to sedentary LDLr-/- mice. Furthermore, the aortas of sedentary LDLr-/- mice showed reduced expression of superoxide dismutase (SOD) isoforms and minor participation of Cu/Zn-dependent SODs in acetylcholine-induced, endothelium-dependent relaxation, abnormalities that were partially attenuated in exercised LDLr-/- mice. Conclusion: The data gathered by this study suggest AET as a potential non-pharmacological therapy in the prevention of very early endothelial dysfunction and redox imbalance in familial hypercholesterolemia via increases in NO bioavailability and H2O2 production. (AU)