Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Stabilizing Dendron-Modified Talc-Based Electrolyte for Quasi-Solid Dye-Sensitized Solar Cell

Full text
Author(s):
Andrade, Jr., Marcos A. S. ; Miettunen, Kati ; Tiihonen, Armi ; Lund, Peter D. ; Nogueira, Ana E. ; Pastore, Heloise O.
Total Authors: 6
Document type: Journal article
Source: Electrochimica Acta; v. 228, p. 413-421, FEB 20 2017.
Web of Science Citations: 6
Abstract

Organic-inorganic layered materials, such as organotalcs, are a promising alternative as gelling agent for liquid electrolytes in dye-sensitized solar cells. Talcs could provide an abundant, low cost and environmentally friendly option for solidifying the electrolyte. This work focuses on generation 5 polyamideamino dendron-modified talc with emphasis is on how it affects the performance and stability of the DSSC. The talc was shown to improve the initial photocurrent by up to 39% by acting as a light scatterer and/or a recombination barrier compared to reference solar Cells with liquid electrolyte. Non-destructive analysis based on photographic image technique revealed that during the aging the additive absorbed charge carriers, tri-iodide, from the electrolyte reducing the performance of the solar cells. The degradation could, however, be prevented by intercalating polyiodides into interlamellar space of the talc as the resulting dendron chains did not absorb tri-iodide charge carriers from the electrolyte. These quasi-solid solar cells maintained 95% of their initial efficiency under light-soaking at 1 Sun for about 1000 h. The cells with a quasi-solid electrolyte showed up to 5% higher efficiency than those with liquid electrolyte. (C) 2017 Published by Elsevier Ltd. (AU)

FAPESP's process: 14/06942-0 - Nanostructured layered solids as acid, basic and redox catalysts
Grantee:Heloise de Oliveira Pastore
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/05911-1 - Layered solid and gel polyelectrolytes for application in dye solar cells
Grantee:Marcos Antonio Santana Andrade Junior
Support Opportunities: Scholarships in Brazil - Doctorate