Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts

Full text
Author(s):
Show less -
Goncalves, N. J. N. ; Bressan, F. F. ; Roballo, K. C. S. ; Meirelles, F. V. ; Xavier, P. L. P. ; Fukumasu, H. ; Williams, C. ; Breen, M. ; Koh, S. ; Sper, R. ; Piedrahita, J. ; Ambrosio, C. E.
Total Authors: 12
Document type: Journal article
Source: Theriogenology; v. 92, p. 75-82, APR 1 2017.
Web of Science Citations: 10
Abstract

Takahashi and Yamanaka established the first technique in which transcription factors related to pluripotency are incorporated into the genome of somatic cells to enable reprogramming of these cells. The expression of these transcription factors enables a differentiated somatic cell to reverse its phenotype to an embryonic state, generating induced pluripotent stem cells (iPSCs). iPSCs from canine fetal fibroblasts were produced through lentiviral polycistronic human and mouse vectors (hOSKM/mOSKM), aiming to obtain pluripotent stem cells with similar features to embryonic stem cells (ESC) in this animal model. The cell lines obtained in this study were independent of LIF or any other supplemental inhibitors, resistant to enzymatic procedure (TrypLE Express Enzyme), and dependent on bFGF. Clonal lines were obtained from slightly different protocols with maximum reprogramming efficiency of 0.001%. All colonies were positive for alkaline phosphatase, embryoid body formation, and spontaneous differentiation and expressed high levels of endogenous OCT4 and SOX2. Canine iPSCs developed tumors at 120 days post-injection in vivo. Preliminary chromosomal evaluations were performed by FISH hybridization, revealing no chromosomal abnormality. To the best of our knowledge, this report is the first to describe the ability to reprogram canine somatic cells via lentiviral vectors without supplementation and with resistance to enzymatic action, thereby demonstrating the pluripotency of these cell lines. (C) 2017 Elsevier Inc. All rights reserved. (AU)

FAPESP's process: 15/09575-1 - Gene edition by CRISPR-Cas9 in the correction of Duchenne muscular dystrophy in a canine model (GRMD) from induced pluripotent stem cells
Grantee:Natalia Juliana Nardelli Gonçalves
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 12/09631-0 - The establishment and culture of iPS from canine fibroblasts
Grantee:Natalia Juliana Nardelli Gonçalves
Support Opportunities: Scholarships abroad - Research Internship - Doctorate
FAPESP's process: 11/22915-5 - Generation of canine pluripotent stem cell through in vivo and in vitro mechanisms
Grantee:Natalia Juliana Nardelli Gonçalves
Support Opportunities: Scholarships in Brazil - Doctorate