Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Mechanical properties and fracture patterns of graphene (graphitic) nanowiggles

Full text
Author(s):
Bizao, R. A. ; Botari, T. ; Perim, E. ; Pugno, Nicola M. ; Galvao, D. S.
Total Authors: 5
Document type: Journal article
Source: Carbon; v. 119, p. 431-437, AUG 2017.
Web of Science Citations: 11
Abstract

Graphene nanowiggles (GNW) are graphene-based nanostructures obtained by making alternated regular cuts in pristine graphene nanoribbons. GNW were recently synthesized and it was demonstrated that they exhibit tunable electronic and magnetic properties by just varying their shape. Here, we have investigated the mechanical properties and fracture patterns of a large number of GNW of different shapes and sizes using fully atomistic reactive molecular dynamics simulations. Our results show that the GNW mechanical properties are strongly dependent on its shape and size and, as a general trend narrow sheets have larger ultimate strength and Young's modulus than wide ones. The estimated Young's modulus values were found to be in a range of approximate to 100 - 1000 GPa and the ultimate strength in a range of approximate to 20 - 110 GPa, depending on GNW shape. Also, super-ductile behavior under strain was observed for some structures. (C) 2017 Elsevier Ltd. All rights reserved. (AU)

FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC