Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Enhanced photoelectrocatalytic performance of TiO2 nanotube array modified with WO3 applied to the degradation of the endocrine disruptor propyl paraben

Full text
Author(s):
Martins, Alysson Stefan [1] ; Nunez, Luciana [1] ; de Vasconcelos Lanza, Marcos Roberto [1, 2]
Total Authors: 3
Affiliation:
[1] Univ Sao Paulo, Inst Quim Sao Carlos, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP - Brazil
[2] UNESP, Inst Quim, Inst Nacl Tecnol Alternat Deteccao Avaliacao Toxi, BR-14800900 Araraquara, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: JOURNAL OF ELECTROANALYTICAL CHEMISTRY; v. 802, p. 33-39, OCT 1 2017.
Web of Science Citations: 5
Abstract

We report on the photoelectrocatalytic degradation of the endocrine disruptor propyl paraben (PPB) using a TiO2 nanotube (TiO2-NT) electrode prepared via chemical anodization, and a TiO2-NT electrode modified with WO3 by electrodeposition. Solutions containing 50 mg L-1 PPB were subjected to the photoelectrocatalytic process in a 0.2 L one-compartment electrochemical cell under UV/VIS irradiation, and the effects of bias potential ( + 0.5, + 1.0 and + 1.5 V) and solution pH (3.0, 7.0 and 10) on the performances of the unmodified and modified electrodes were investigated. Scanning electron micrographs (SEM) showed that the nanotubes were highly organized and perpendicularly aligned with a mean length of 800 nm. According to energy dispersive X-ray and SEM analyses, the concentration of W in the TiO2-NT/WO3 electrode was -0.75% and the distribution of the modifier was continuous and homogeneous on the surface, with pores uncovered and decorated with WO3. The photocurrent of the TiO2-NT/WO3 electrode was improved by more than 20% in relation to its unmodified counterpart. The maximum degradation efficiencies were achieved at higher applied potentials and under acidic conditions for both electrodes. However, best results were obtained using the TiO2-NT/WO3 electrode with an applied potential of + 1.50 V and at pH 3. Under these conditions, more than 99% of PPB was removed in 30 min and 94% mineralization was achieved in 60 min. The photoactivity of the electrode was highly stable even after exhaustive application, indicating that WO3 deposition is an important method for improving the properties of TiO2-NT electrodes as applied to organic oxidation. (AU)

FAPESP's process: 13/08543-3 - Development of modified TiO2 nanotubes for electrochemical treatment of endocrine disruptors: bisphenol a and n-propylparaben
Grantee:Alysson Stefan Martins
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 14/50945-4 - INCT 2014: National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies
Grantee:Maria Valnice Boldrin
Support type: Research Projects - Thematic Grants
FAPESP's process: 16/01937-4 - Synthesis of binary metal oxides (Nb, Zr, ta, Ru, mo and co) supported on amorphous carbon for the production of gas diffusion electrodes (GDE) for the electrosynthesis of H2O2 in situ in flow reactors
Grantee:Marcos Roberto de Vasconcelos Lanza
Support type: Regular Research Grants