Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Equal but different: Natural ecotones are dissimilar to anthropic edges

Full text
Author(s):
Lourenco, Giselle M. [1] ; Soares, Gloria R. [2] ; Santos, Talita P. [3] ; Dattilo, Wesley [4] ; Freitas, Andre V. L. [1, 5] ; Ribeiro, Servio P. [2, 1, 3]
Total Authors: 6
Affiliation:
[1] Univ Estadual Campinas, Inst Biol, Dept Biol Anim, Campinas, SP - Brazil
[2] Univ Fed Vicosa, Dept Biol Geral, Vicosa, MG - Brazil
[3] Univ Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Biodiversidade Evolucao & Meio Ambiente, Ouro Preto, MG - Brazil
[4] Inst Ecol AC, Red Ecoetol, Xalapa, Veracruz - Mexico
[5] Univ Estadual Campinas, Inst Biol, Museu Zool, Campinas, SP - Brazil
Total Affiliations: 5
Document type: Journal article
Source: PLoS One; v. 14, n. 3 MAR 4 2019.
Web of Science Citations: 1
Abstract

Increasing deforestation worldwide has expanded the interfaces between fragmented forests and non-forest habitats. Human-made edges are very different from the original forest cover, with different microclimatic conditions. Conversely, the natural transitions (i.e., ecotones) are distinct from human-made forest edges. The human-made forest edges are usually sharp associated with disturbances, with abrupt changes in temperature, humidity, luminosity and wind incidence towards the forest interior. However, the natural forest-lake ecotones, even when abrupt, are composed of a complex vegetal physiognomy, with canopy structures close to the ground level and a composition of herbaceous and arboreal species well adapted to this transition range. In the present study, fruit-feeding butterflies were used as models to investigate whether faunal assemblages in natural ecotones are more similar to the forest interior than to the anthropic edges. Butterflies were sampled monthly over one year in the Rio Doce State Park, Southeastern Brazil, following a standardized design using a total of 90 bait traps, in three different forest habitats (forest interior, forest ecotone and anthropic edges), in both canopy and understory. A total of 11,594 individuals from 98 butterfly species were collected (3,151 individuals from 79 species in the forest interior, 4,321 individuals from 87 species in the ecotone and 4,122 individuals from 83 species in the edge). The results indicated that the butterfly richness and diversity were higher in transition areas (ecotones and edges). The ecotone included a combination of butterfly species from the forest interior and from anthropic edges. However, species composition and dominance in the ecotone were similar to the forest interior in both vertical strata. These results suggest that human made forest edges are quite distinct from ecotones. Moreover, ecotones represent unique habitats accommodating species adapted to distinct ecological conditions, while anthropic edges accommodate only opportunistic species from open areas or upper canopies. (AU)

FAPESP's process: 11/50225-3 - Natural history, phylogeny and conservation of Neotropical Lepidoptera
Grantee:André Victor Lucci Freitas
Support Opportunities: BIOTA-FAPESP Program - Regular Research Grants
FAPESP's process: 13/50297-0 - Dimensions US-BIOTA São Paulo: a multidisciplinary framework for biodiversity prediction in the Brazilian Atlantic forest hotspot
Grantee:Cristina Yumi Miyaki
Support Opportunities: BIOTA-FAPESP Program - Thematic Grants