Advanced search
Start date
Betweenand
(Reference retrieved automatically from SciELO through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Constructions of Dense Lattices over Number Fields

Full text
Author(s):
A.A. ANDRADE [1] ; A.J. FERRARI [2] ; J.C. INTERLANDO [3] ; R. R. ARAUJO [4]
Total Authors: 4
Affiliation:
[1] Universidade Estadual Paulista “Júlio de Mesquita Filho”. Instituto de Biociências, Letras e Ciências Exatas. Departamento de Matemática - Brasil
[2] Universidade Estadual Paulista “Júlio de Mesquita Filho”. Faculdade de Ciências. Departamento de Matemática - Brasil
[3] San Diego State University. Department of Mathematics & Statistics - Estados Unidos
[4] Instituto Federal de São Paulo - Brasil
Total Affiliations: 4
Document type: Journal article
Source: TEMA (São Carlos); v. 21, n. 1, p. 57-63, 2020-04-30.
Abstract

ABSTRACT In this work, we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2;3;4;5;6;8 and 12, which are rotated versions of the lattices Λ n , for n = 2 , 3 , 4 , 5 , 6 , 8 and K 12. These algebraic lattices are constructed through canonical homomorphism via ℤ-modules of the ring of algebraic integers of a number field. (AU)

FAPESP's process: 13/25977-7 - Security and reliability of Information: theory and practice
Grantee:Marcelo Firer
Support Opportunities: Research Projects - Thematic Grants