Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

A Novel Fungal Lipase With Methanol Tolerance and Preference for Macaw Palm Oil

Full text
Show less -
Rade, Leticia L. [1] ; da Silva, Melque N. P. [1] ; Vieira, Plinio S. [1] ; Milan, Natalia [2, 1] ; de Souza, Claudia M. [1] ; de Melo, Ricardo R. [1] ; Klein, Bruno C. [1] ; Bonomi, Antonio [1] ; de Castro, Heizir F. [2] ; Murakami, Mario T. [1] ; Zanphorlin, Leticia M. [1]
Total Authors: 11
[1] Brazilian Ctr Res Energy & Mat, Brazilian Biorenewables Natl Lab, Campinas - Brazil
[2] Univ Sao Paulo, Engn Sch Lorena, Dept Chem Engn, Lorena - Brazil
Total Affiliations: 2
Document type: Journal article
Web of Science Citations: 1

Macaw palm is a highly oil-producing plant, which presents high contents of free fatty acids, being a promising feedstock for biofuel production. The current chemical routes are costly and complex, involving highly harsh industrial conditions. Enzymatic processing is a potential alternative; however, it is hampered by the scarce knowledge on biocatalysts adapted to this acidic feedstock. This work describes a novel lipase isolated from the thermophilic fungus Rasamsonia emersonii (ReLip), which tolerates extreme conditions such as the presence of methanol, high temperatures, and acidic medium. Among the tested feedstocks, the enzyme showed the highest preference for macaw palm oil, producing a hydrolyzate with a final free fatty acid content of 92%. Crystallographic studies revealed a closed conformation of the helical amphipathic lid that typically undergoes conformational changes in a mechanism of interfacial activation. Such conformation of the lid is stabilized by a salt bridge, not observed in other structurally characterized homologs, which is likely involved in the tolerance to organic solvents. Moreover, the lack of conservation of the aromatic cluster IxxWxxxxxF in the lid of ReLip with the natural mutation of the phenylalanine by an alanine might be correlated with the preference of short acyl chains, although preserving catalytic activity on insoluble substrates. In addition, the presence of five acidic amino acids in the lid of ReLip, a rare property reported in other lipases, may have contributed to its ability to tolerate and be effective in acidic environments. Therefore, our work describes a new fungal biocatalyst capable of efficiently hydrolyzing macaw oil, an attractive feedstock for the production of ``drop-in{''} biofuels, with high desirable feature for industrial conditions such as thermal and methanol tolerance, and optimum acidic pH. Moreover, the crystallographic structure was elucidated, providing a structural basis for the enzyme substrate preference and tolerance to organic solvents. (AU)

FAPESP's process: 18/04897-9 - Production of biodiesel and renewable hydrocarbons via enzymatic route: from the enzyme synthesis to the economic evaluation of the integrated process
Grantee:Letícia Leandro Rade
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 16/50403-2 - Valorizing the decentralized biomass production chain for advanced biofuel production: development and evaluation of thermochemical routes integrated with biomass production and biochemical routes
Grantee:Antonio Maria Francisco Luiz Jose Bonomi
Support type: Research Grants - Research Partnership for Technological Innovation - PITE
FAPESP's process: 15/26982-0 - Exploring novel strategies for depolymerization of plant cell-wall polysaccharides: from structure, function and rational design of glycosyl hydrolases to biological implications and potential biotechnological applications
Grantee:Mário Tyago Murakami
Support type: Research Projects - Thematic Grants
FAPESP's process: 19/08855-1 - New mechanisms of P450: an enzymatic strategy for renewable hydrocarbons
Grantee:Leticia Maria Zanphorlin
Support type: Regular Research Grants
FAPESP's process: 18/10517-4 - Investigation of a new recombinant fungal lipase for the production of renewable hydrocarbons
Grantee:Melque Natã Pereira da Silva
Support type: Scholarships in Brazil - Scientific Initiation