Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Grinding behavior of austempered ductile iron: a study about the effect of pure and diluted MQL technique applying different friability wheels

Full text
Author(s):
Moretti, Guilherme Bressan [1] ; de Moraes, Douglas Lyra [1] ; Garcia, Mateus Vinicius [1] ; Lopes, Jose Claudio [1] ; Ribeiro, Fernando Sabino Fonteque [2] ; Foschini, Cesar Renato [1] ; de Mello, Hamilton Jose [1] ; Sanchez, Luiz Eduardo De Angelo [1] ; Aguiar, Paulo Roberto [3] ; Bianchi, Eduardo Carlos [1]
Total Authors: 10
Affiliation:
[1] Sao Paulo State Univ Julio de Mesquita Filho, Dept Mech Engn, Bauru Campus, Bauru, SP - Brazil
[2] Fed Inst Parana, Dept Control & Ind Proc, Jacarezinho Campus, Jacarezinho, Parana - Brazil
[3] Sao Paulo State Univ Julio de Mesquita Filho, Dept Elect Engn, Bauru Campus, Bauru, SP - Brazil
Total Affiliations: 3
Document type: Journal article
Source: INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY; v. 108, n. 11-12 JUN 2020.
Web of Science Citations: 1
Abstract

Abrasion machining has stood out in the current industry due to constant improvements in the dimensional accuracy of a workpiece in its finishing process. Thus, it is necessary to use cutting fluid to cool and lubricate the workpiece-wheel contact, to reduce both the high temperatures reached and the friction. However, conventional cutting fluid is harmful to the environment and poses a risk to the operator's health. As a result, the minimum lubricant quantity (MQL) technique emerged, using extremely smaller amounts of fluid and, however, showing excellent results in its applications. In this way, it could further optimize this method through studies on oil dilution, combating low cooling capacity. A fundamental concept for selecting the grinding wheel type to be used in grinding is friability, but there are few studies on its influence on the process. For these reasons, this research analyzed the impact of friability and the effects of MQL dilution on the grinding of austempered ductile iron, the use of two CBN wheels with high and low friability, and four types of lubri-refrigerant methods: flood, pure MQL, and diluted MQL in the oil-water ratio 1:5 and 1:10. Output parameters were analyzed: surface roughness (Ra), roundness error, diametrical wheel wear, cutting power, acoustic emission, viscosity, 3D confocal, and microhardness. The results show an improvement of the diluted MQL over the pure, coming close to the conventional method. Besides, the low friability wheel was more efficient in the analysis of surface roughness, roundness error, and diametrical wheel wear. However, most friable stood out in the results of acoustic emission and grinding power. (AU)

FAPESP's process: 16/23910-0 - Nanostructured ceramic film manufacturing for gas sensors application
Grantee:Cesar Renato Foschini
Support type: Regular Research Grants
FAPESP's process: 18/22661-2 - Performance of the application of liquid nitrogen in the cylindrical grinding of the nickel alloy Inconel 718
Grantee:Mateus Vinicius Garcia
Support type: Scholarships in Brazil - Scientific Initiation
FAPESP's process: 19/24933-2 - Effect of anti-corrosive OIL-WATER application on alumina grinding
Grantee:Douglas Lyra de Moraes
Support type: Scholarships in Brazil - Scientific Initiation