Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Wrapping Up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus

Full text
Author(s):
Sonora, Martin [1] ; Martinez, Leandro [2, 3] ; Pantano, Sergio [1] ; Machado, Matias R. [1]
Total Authors: 4
Affiliation:
[1] Inst Pasteur Montevideo, Biomol Simulat Grp, Montevideo 11400 - Uruguay
[2] Univ Estadual Campinas, Inst Chem, BR-13083861 Campinas, SP - Brazil
[3] Univ Estadual Campinas, Ctr Computat Engn & Sci, BR-13083861 Campinas, SP - Brazil
Total Affiliations: 3
Document type: Journal article
Source: JOURNAL OF CHEMICAL INFORMATION AND MODELING; v. 61, n. 1, p. 408-422, JAN 25 2021.
Web of Science Citations: 0
Abstract

Simulating huge biomolecular complexes of million atoms at relevant biological time scales is becoming accessible to the broad scientific community. That proves to be crucial for urgent responses against emergent diseases in real time. Yet, there are still issues to sort regarding the system setup so that molecular dynamics (MD) simulations can be run in a simple and standard way. Here, we introduce an optimized pipeline for building and simulating enveloped virus-like particles (VLP). First, the membrane packing problem is tackled with new features and optimized options in PACKMOL. This allows preparing accurate membrane models of thousands of lipids in the context of a VLP within a few hours using a single CPU. Then, the assembly of the VLP system is done within the multiscale framework of the coarse-grained SIRAH force field. Finally, the equilibration protocol provides a system ready for production MD simulations within a few days on broadly accessible GPU resources. The pipeline is applied to study the Zika virus as a test case for large biomolecular systems. The VLP stabilizes at approximately 0.5 mu s of MD simulation, reproducing correlations greater than 0.90 against experimental density maps from cryo- electron microscopy. Detailed structural analysis of the protein envelope also shows very good agreement in root-mean-square deviations and B-factors with the experimental data. The level of details attained shows for the first time a possible role for anionic phospholipids in stabilizing the envelope. Combining an efficient and reliable setup procedure with an accurate coarse-grained force field provides a valuable pipeline for simulating arbitrary viral systems or subcellular compartments, paving the way toward whole-cell simulations. (AU)

FAPESP's process: 10/16947-9 - Correlations between dynamics, structure and function in protein: computer simulations and algorithms
Grantee:Leandro Martinez
Support Opportunities: Regular Research Grants
FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 18/14274-9 - Protein Structure Determination from Distance Constraints Derived from Chemical Cross-linking: Computational Methods and Applications
Grantee:Leandro Martinez
Support Opportunities: Regular Research Grants
FAPESP's process: 18/24293-0 - Computational methods in optimization
Grantee:Sandra Augusta Santos
Support Opportunities: Research Projects - Thematic Grants