Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Synthesis and characterization of Fe3O4-HfO2 nanoparticles by hyperfine interactions measurements

Full text
Author(s):
Sales, T. S. N. [1] ; Burimova, A. [1] ; Rodrigues, P. S. [1] ; Matos, I. T. [1] ; Cabrera-Pasca, G. A. [2] ; Saxena, R. N. [1] ; Pereira, L. F. D. [1] ; Otubo, L. [1] ; Carbonari, A. W. [1]
Total Authors: 9
Affiliation:
[1] IPEN CNEN SP, Inst Pesquisas Energet & Nucl, BR-05508000 Sao Paulo, SP - Brazil
[2] Univ Fed Para, BR-68440000 Abaetetuba, PA - Brazil
Total Affiliations: 2
Document type: Journal article
Source: AIP ADVANCES; v. 11, n. 1 JAN 1 2021.
Web of Science Citations: 0
Abstract

Nanoparticles (NPs) that combine biocompatibility and enhanced physical characteristics for biomedical applications are currently an area of intense scientific research. Hafnium oxide NPs are an innovative approach in the anticancer treatment by radiotherapy due to their low toxicity and enhancement of local dose in the tumor reducing the total radiation dose for the patient. The combination of this property with the excellent magnetic hyperthermia performance of Fe3O4 NPs can produce a promising nanomaterial for cancer therapy. In this work, we attempted to synthesize nanoscale samples of HfO2 doped with nominal 10 at.% Fe, and Fe3O4 doped with Hf at 10 at.% level using simple chemical routes. The crystal structure of the samples was characterized by X-ray diffraction. The material was irradiated with neutrons in a research reactor, the nuclear reaction Hf-180(n, gamma)Hf-181 yielding the probe nucleus Hf-181(Ta-181) used in the perturbed angular correlations experiments to measure hyperfine interactions. Despite their immediate response to the external magnetic field, at local level both samples showed only electric quadrupole interaction typical of the monoclinic hafnia indicating that Fe replaces Hf in HfO2 NPs, but, rather than substituting Fe, Hf enters magnetite in the form of HfO2 clusters. Transmission Electron Microscopy was exploited to study the morphology of these complex systems, as well as to localize hafnia clusters and understand the nature of their coupling to Fe3O4 specks. (AU)

FAPESP's process: 19/15620-0 - Tuning MFe2O4 (M=Co,Ni) nanoparticles for in vivo biomedical applications: Doping with rare earths and biocompatible coating
Grantee:Anastasia Nikolaevna Burimova
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 17/50332-0 - Scientific, technological and infrastructure qualification in radiopharmaceuticals, radiation and entrepreneurship for health purposes (PDIp)
Grantee:Marcelo Linardi
Support Opportunities: Research Grants - State Research Institutes Modernization Program