Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Experimental and Theoretical Insights into the Structural Disorder and Gas Sensing Properties of ZnO

Full text
Author(s):
de Lima, Bruno Sanches [1] ; Martinez-Alanis, Paulina R. [2] ; Guell, Frank [2] ; dos Santos Silva, Weverton Alison [1] ; Bernardi, Maria I. B. [1] ; Marana, Naiara L. [3] ; Longo, Elson [4] ; Sambrano, Julio R. [3] ; Mastelaro, Valmor R. [1]
Total Authors: 9
Affiliation:
[1] Univ Sao Paulo, Sao Carlos Inst Phys, Sao Carlos, SP - Brazil
[2] Univ Barcelona, ENFOCAT IN2UB, E-08028 Barcelona - Spain
[3] Sao Paulo State Univ, Modeling & Mol Simulat Grp, BR-01049010 Bauru, SP - Brazil
[4] Fed Univ Sao Carlos UFSCar, Dept Chem, BR-13565905 Sao Carlos, SP - Brazil
Total Affiliations: 4
Document type: Journal article
Source: ACS APPLIED ELECTRONIC MATERIALS; v. 3, n. 3, p. 1447-1457, MAR 23 2021.
Web of Science Citations: 0
Abstract

Recently, it was demonstrated that ZnO thin films sputtered under oxygen-rich atmospheres exhibit localized structural disorder with a significant impact on their physical properties due to the presence of high energetic ions in the plasma. Here, highly disordered ZnO thin films have been realized simply by using a metallic Zn target under a deposition atmosphere of pure oxygen (O-2). The results of XRD and Raman spectroscopy show that the defects induced during the deposition crystallize a highly disordered wurtzite-type structure. In addition, theoretical DFT calculations were applied for a better comprehension of the nature of these structural defects, in which it is shown that the presence of Zn and O in interstitial positions may be responsible for a symmetry break in the wurtzite structure. It is shown that high disorder of the structure has a significant impact on its fundamental properties. For instance, the UV-vis absorption curve shows a significant increase in the bandgap of ZnO, while photoluminescence (PL) measurements show the emergence of bands in the visible range, confirming the presence of Zn and O in interstitial positions. This manuscript also explores the gas sensing properties of films deposited under a pure oxygen atmosphere. Our results demonstrate that their sensitivity can be significantly enhanced toward oxidizing gas detection, such as ozone. On the other hand, it is shown that the gas sensing properties regarding reducing gas detection, such as H-2, are not significantly altered when compared to non-disordered ZnO. (AU)

FAPESP's process: 13/07296-2 - CDMF - Center for the Development of Functional Materials
Grantee:Elson Longo da Silva
Support type: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 19/12430-6 - Computational study of properties of pure and functionalized multiwalled nanotubes
Grantee:Naiara Letícia Marana
Support type: Scholarships abroad - Research Internship - Post-doctor
FAPESP's process: 16/25500-4 - Functionalization of semiconductor nanotubes via interfaces and gas adsorption: a computational approach
Grantee:Naiara Letícia Marana
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 18/07517-2 - Graphene and metal oxides composites: application as toxic gas sensors
Grantee:Bruno Sanches de Lima
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 19/22899-1 - Graphene-based nanocomposites for gas sensing applications
Grantee:Bruno Sanches de Lima
Support type: Scholarships abroad - Research Internship - Post-doctor
FAPESP's process: 19/08928-9 - Modeling and simulations of porous inorganic nanotubes functionalization
Grantee:Julio Ricardo Sambrano
Support type: Regular Research Grants