Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Effective recovery of ytterbium through biosorption using crosslinked sericin-alginate beads: A complete continuous packed-bed column study

Full text
Author(s):
da Costa, Talles Barcelos [1] ; Carlos da Silva, Meuris Gurgel [1] ; Adeodato Vieira, Melissa Gurgel [1]
Total Authors: 3
Affiliation:
[1] Univ Estadual Campinas, Sch Chem Engn, Albert Einstein Ave, BR-13083852 Campinas - Brazil
Total Affiliations: 1
Document type: Journal article
Source: JOURNAL OF HAZARDOUS MATERIALS; v. 421, JAN 5 2022.
Web of Science Citations: 1
Abstract

The recovery of rare-earth from secondary sources is essential for cleaner production. The development of natural biocomposites is promising for this purpose. Sericin is a waste protein from silk manufacturing. The highly polar groups on the surface of sericin facilitate blending and crosslinking with other polymers to produce biocomposites with improved properties. In this work, we investigate ytterbium recovery onto a natural biocomposite based on sericin/alginate/poly(vinyl alcohol) (SAPVA) in packed-bed column, aiming to establish a profitable application for sericin. Effects of flow rate and ytterbium inlet concentration showed that the highest exhaustion biosorption capacity (128.39 mg/g) and lowest mass transfer zone (4.13 cm) were reached under the operating conditions of 0.03 L/h and 87.95 mg/L. Four reusability cycles were performed under the optimum operating conditions using 0.3 mol/L HNO3. Ytterbium recovery was highly successful; desorption efficiency was higher than 97% and a final ytterbium-rich concentrate (3870 mg/L) was 44 times higher than input concentration. Regenerated beads characterization showed that the cation exchange mechanism plays a major function in continuous biosorption of ytterbium. SAPVA beads also showed higher biosorption/desorption performance for ytterbium than other competing ions. These results suggest the application of SAPVA may be an alternative for large-scale ytterbium recovery. (AU)

FAPESP's process: 17/18236-1 - RECOVERY OF NOBLE METALLIC IONS AND RARE-EARTH IONS FROM AQUEOUS SOLUTIONS BY BIOADSORTION IN PARTICLES PRODUCED FROM SERICINE AND ALGINATE BLENDS
Grantee:Melissa Gurgel Adeodato Vieira
Support Opportunities: Regular Research Grants
FAPESP's process: 19/11353-8 - Brazilian Water Research Center (BWRC)
Grantee:Lauro Tatsuo Kubota
Support Opportunities: Research Grants - Research Centers in Engineering Program