Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

The impact of teenage pregnancy on school dropout in Brazil: a Bayesian network approach

Full text
Author(s):
Cruz, Emerson [1] ; Cozman, Fabio Gagliardi [1] ; Souza, Wilson [2] ; Takiuti, Albertina [2]
Total Authors: 4
Affiliation:
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo - Brazil
[2] Secretaria Estado Saude Sao Paulo, Programa Saude Adolescente, Sao Paulo - Brazil
Total Affiliations: 2
Document type: Journal article
Source: BMC PUBLIC HEALTH; v. 21, n. 1 OCT 13 2021.
Web of Science Citations: 0
Abstract

Background As reported by the World Health Organization, adolescent pregnancy is a major public health concern given its impact on the life of mothers and their family members. In this study we investigated possible cause-effect relations between teenage pregnancy and school dropout, and other attributes that gravitate around them, using the Bayesian network approach. Methods We used a database prepared by the Adolescent House Project and invited experts in the areas of Health, Education and Social Assistance to answer a survey containing questions aimed at detecting possible causal relationships. To perform the statistical analysis and the numerical simulations we employed the language and formalism of Bayesian networks. Results The analysis indicated a strong cause-effect relation between teenage pregnancy and school dropout, bolstered by economic vulnerability. We were able to identify the profile of the female teenager who drops out from school: white girls older than 15 years who got pregnant at least once, are not working to generate an income, and who belong to the group where the family income is less than or equal to US\$780 per month. Also we detected the ``maternal impact factor{''}, i.e., the effect caused by whether or not the mothers of the teenagers have experienced teenage pregnancy. Conclusion There are many factors that lead teenagers to drop out of school; we confirmed not only the commonsense notion that pregnancy of the teenager is a major factor but found that a history of teenage pregnancy on the part of the mother is a major factor. Moreover, Bayesian networks emerged as an interesting mathematical framework to perform the statistical analysis. (AU)

FAPESP's process: 19/07665-4 - Center for Artificial Intelligence
Grantee:Fabio Gagliardi Cozman
Support Opportunities: Research Grants - Research Program in eScience and Data Science - Research Centers in Engineering Program