Advanced search
Start date
Betweenand


Event Prediction Based on Unsupervised Graph-Based Rank-Fusion Models

Full text
Author(s):
Dourado, Icaro Cavalcante ; Tabbone, Salvatore ; Torres, Ricardo da Silva ; Conte, D ; Ramel, JY ; Foggia, P
Total Authors: 6
Document type: Journal article
Source: GRAPH-BASED REPRESENTATIONS IN PATTERN RECOGNITION, GBRPR 2019; v. 11510, p. 11-pg., 2019-01-01.
Abstract

This paper introduces an unsupervised graph-based rank aggregation approach for event prediction. The solution is based on the encoding of multiple ranks of a query, defined according to different criteria, into a graph. Later, we embed the generated graph into a feature space, creating fusion vectors. These vectors are then used to train a predictor to determine if an input (even multimodal) object refers to an event or not. Performed experiments in the context of the flooding detection task of the MediaEval 2017 shows that the proposed solution is highly effective for different detection scenarios involving textual, visual, and multimodal features, yielding better detection results than several state-of-the-art methods. (AU)

FAPESP's process: 17/20945-0 - Multi-user equipment approved in great 16/50250-1: local positioning system
Grantee:Sergio Augusto Cunha
Support Opportunities: Multi-user Equipment Program
FAPESP's process: 14/50715-9 - Characterizing and predicting biomass production in sugarcane and eucalyptus plantations in Brazil
Grantee:Rubens Augusto Camargo Lamparelli
Support Opportunities: Research Grants - Research Partnership for Technological Innovation - PITE
FAPESP's process: 14/12236-1 - AnImaLS: Annotation of Images in Large Scale: what can machines and specialists learn from interaction?
Grantee:Alexandre Xavier Falcão
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 16/50250-1 - The secret of playing football: Brazil versus the Netherlands
Grantee:Sergio Augusto Cunha
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/50155-0 - Combining new technologies to monitor phenology from leaves to ecosystems
Grantee:Leonor Patricia Cerdeira Morellato
Support Opportunities: Research Program on Global Climate Change - University-Industry Cooperative Research (PITE)
FAPESP's process: 15/24494-8 - Communications and processing of big data in cloud and fog computing
Grantee:Nelson Luis Saldanha da Fonseca
Support Opportunities: Research Projects - Thematic Grants