Advanced search
Start date
Betweenand


From Actions to Events: A Transfer Learning Approach Using Improved Deep Belief Networks

Full text
Author(s):
Roder, Mateus ; Almeida, Jurandy ; De Rosa, Gustavo H. ; Passos, Leandro A. ; Rossi, Andre L. D. ; Papa, Joao P. ; IEEE
Total Authors: 7
Document type: Journal article
Source: 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021); v. N/A, p. 8-pg., 2021-01-01.
Abstract

In the last decade, exponential data growth supplied machine learning-based algorithms' capacity and enabled their usage in daily-life activities. Additionally, such an improvement is partially explained due to the advent of deep learning techniques, i.e., stacks of simple architectures that end up in more complex models. Although both factors produce outstanding results, they also pose drawbacks regarding the learning process as training complex models over large datasets are expensive and time-consuming. Such a problem is even more evident when dealing with video analysis. Some works have considered transfer learning or domain adaptation, i.e., approaches that map the knowledge from one domain to another, to ease the training burden, yet most of them operate over individual or small blocks of frames. This paper proposes a novel approach to map the knowledge from action recognition to event recognition using an energy-based model, denoted as Spectral Deep Belief Network. Such a model can process all frames simultaneously, carrying spatial and temporal information through the learning process. The experimental results conducted over two public video dataset, the HMDB-51 and the UCF-101, depict the effectiveness of the proposed model and its reduced computational burden when compared to traditional energy-based models, such as Restricted Boltzmann Machines and Deep Belief Networks. (AU)

FAPESP's process: 13/07375-0 - CeMEAI - Center for Mathematical Sciences Applied to Industry
Grantee:Francisco Louzada Neto
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 19/07825-1 - Deep Boltzmann machines for event recognition in videos
Grantee:Mateus Roder
Support Opportunities: Scholarships in Brazil - Master
FAPESP's process: 17/25908-6 - Weakly supervised learning for compressed video analysis on retrieval and classification tasks for visual alert
Grantee:João Paulo Papa
Support Opportunities: Research Grants - Research Partnership for Technological Innovation - PITE
FAPESP's process: 19/07665-4 - Center for Artificial Intelligence
Grantee:Fabio Gagliardi Cozman
Support Opportunities: Research Grants - Research Program in eScience and Data Science - Research Centers in Engineering Program