Advanced search
Start date
Betweenand


Uniqueness and stability of limit cycles in planar piecewise linear differential systems without sliding region

Full text
Author(s):
Carmona, Victoriano ; Fernandez-Sanchez, Fernando ; Novaes, Douglas D.
Total Authors: 3
Document type: Journal article
Source: COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION; v. 123, p. 18-pg., 2023-04-28.
Abstract

In this paper, we consider the family of planar piecewise linear differential systems with two zones separated by a straight line without sliding regions, that is, differential systems whose flow transversally crosses the switching line except for at most one point. In the research literature, many papers deal with the problem of determining the maximum number of limit cycles that these differential systems can have. This problem has been usually approached via large case-by-case analyses which distinguish the many different possibilities for the spectra of the matrices of the differential systems. Here, by using a novel integral characterization of Poincare half-maps, we prove, without unnecessary distinctions of matrix spectra, that the optimal uniform upper bound for the number of limit cycles of these differential systems is one. In addition, it is proven that this limit cycle, if it exists, is hyperbolic and its stability is determined by a simple condition in terms of the parameters of the system. As a byproduct of our analysis, a condition for the existence of the limit cycle is also derived. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). (AU)

FAPESP's process: 19/10269-3 - Ergodic and qualitative theories of dynamical systems II
Grantee:Claudio Aguinaldo Buzzi
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 21/10606-0 - On limit cycles in piecewise linear vector fields with algebraic discontinuity variety
Grantee:Douglas Duarte Novaes
Support Opportunities: Scholarships abroad - Research
FAPESP's process: 18/13481-0 - Geometry of control, dynamical and stochastic systems
Grantee:Marco Antônio Teixeira
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 22/09633-5 - Averaging theory for studying invariant tori and periodic behavior in differential equations and inclusions
Grantee:Douglas Duarte Novaes
Support Opportunities: Regular Research Grants