Advanced search
Start date
Betweenand


Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model

Full text
Author(s):
Mamani, Javier Bustamante ; Marinho, Bruna Souto ; de Albuquerque Rego, Gabriel Nery ; Nucci, Mariana Penteado ; Alvieri, Fernando ; dos Santos, Ricardo Silva ; Matias Ferreira, Joao Victor ; de Oliveira, Fernando Anselmo ; Gamarra, Lionel Fernel
Total Authors: 9
Document type: Journal article
Source: Einstein (São Paulo); v. 18, p. 8-pg., 2020-01-01.
Abstract

Objective: To evaluate the magnetic hyperthermia therapy in glioblastoma tumor-on-a-Chip model using a microfluidics device. Methods: The magnetic nanoparticles coated with aminosilane were used for the therapy of magnetic hyperthermia, being evaluated the specific absorption rate of the magnetic nanoparticles at 300 Gauss and 305kHz. A preculture of C6 cells was performed before the 3D cells culture on the chip. The process of magnetic hyperthermia on the Chip was performed after administration of 20 mu L of magnetic nanoparticles (10mgFe/mL) using the parameters that generated the specific absorption rate value. The efficacy of magnetic hyperthermia therapy was evaluated by using the cell viability test through the following fluorescence staining: calcein acetoxymethyl ester (492/513nm), for live cells, and ethidium homodimer-1 (526/619nm) for dead cells dyes. Results: Magnetic nanoparticles when submitted to the alternating magnetic field (300 Gauss and 305kHz) produced a mean value of the specific absorption rate of 115.4 +/- 6.0W/g. The 3D culture of C6 cells evaluated by light field microscopy imaging showed the proliferation and morphology of the cells prior to the application of magnetic hyperthermia therapy. Fluorescence images showed decreased viability of cultured cells in organ-on-a-Chip by 20% and 100% after 10 and 30 minutes of the magnetic hyperthermia therapy application respectively. Conclusion: The study showed that the therapeutic process of magnetic hyperthermia in the glioblastoma on-a-chip model was effective to produce the total cell lise after 30 minutes of therapy. (AU)

FAPESP's process: 16/21470-3 - Therapeutic action of mesenchymal stem cells from human bone marrow labeled with multimodal nanoparticles in diabetic rats subjected to stroke: study of cellular, molecular and functional mechanisms.
Grantee:Lionel Fernel Gamarra Contreras
Support Opportunities: Regular Research Grants
FAPESP's process: 14/50983-3 - INCT 2014: complex fluids
Grantee:Antonio Martins Figueiredo Neto
Support Opportunities: Research Projects - Thematic Grants