Advanced search
Start date
Betweenand


Bi2S3 for sunlight-based Cr(VI) photoreduction: investigating the effect of sulfur precursor on its structural and photocatalytic properties

Full text
Author(s):
de Moraes, Nicolas Perciani ; Ribeiro, Pedro Malavota ; da Silva, Bruno Henrique Baena ; Campos, Tiago Moreira Bastos ; Thim, Gilmar Patrocinio ; Lanza, Marcos Roberto de Vasconcelos ; Rodrigues, Liana Alvares
Total Authors: 7
Document type: Journal article
Source: Journal of Sol-Gel Science and Technology; v. 112, n. 2, p. 14-pg., 2024-09-19.
Abstract

This study investigated the suitability of multiple bismuth sulfide (Bi2S3) samples for the photoreduction of Cr(VI) under simulated sunlight, aiming to elucidate the effect of different sulfide sources (thiourea, thioacetamide, sodium sulfide, potassium sulfide, and ammonium sulfide) on the final structural and photocatalytic properties of this semiconductor. The sulfides were produced through simple precipitation methods, without the necessity of complex methodologies or equipment. Additionally, the effect of thermal treatment on the properties of the Bi2S3 samples was also evaluated. The choice of the sulfide precursor imparted distinct characteristics onto the synthesized Bi2S3, such as distinct morphologies, specific surface areas (SSA), and crystalline structures. Notably, the efficiency of Cr(VI) photoreduction was found to be intricately linked to the adsorption capacity of Bi2S3. In this context, the calcination process emerged as a significant impediment, as it substantially diminished both the SSA and adsorption capacity of the materials. Among the sulfide sources investigated, Bi2S3 synthesized using K2S exhibited superior photoreduction efficiency, attributed primarily to its remarkable adsorption capacity and rod-like morphology. The photoreduction mechanism was determined to be carried out by the direct reaction between Cr(VI) and photogenerated electrons. Regarding operational parameters, initial concentration, pH and temperature had major effects on the photoreduction efficiency; high initial concentrations led to the saturation of the active sites and lower reaction rate constants, whereas lower pHs and higher temperatures favored the photoreduction process. As for the recycle tests of the best photocatalyst, it was discovered a significant efficiency loss between cycles, which was linked to the occlusion of active sites through the formation of chrome-based species on the surface of the photocatalyst. (AU)

FAPESP's process: 20/12874-9 - Infiltration graded by glass in an experimental composite based on whiskers of alumina and zircônia: development, microstructural characterization and optical and mechanical properties
Grantee:Tiago Moreira Bastos Campos
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 14/50945-4 - INCT 2014: National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies
Grantee:Maria Valnice Boldrin
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 18/16360-0 - Development of ZnO/Bi2O3/Carbon xerogel ternary composites as photocatalysts for the degradation of persistent organic pollutants
Grantee:Nicolas Perciani de Moraes
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 18/10492-1 - Photocatalytic evaluation of heterojunctions semiconductor/ZnO/carbon xerogel in the photodegradation of 4-chlorophenol in both fluidized bed and batch reactors
Grantee:Liana Alvares Rodrigues
Support Opportunities: Regular Research Grants
FAPESP's process: 22/12895-1 - Advanced processes for the degradation of emerging pollutants: catalytic materials, electroanalytical sensors and scientific dissemination
Grantee:Marcos Roberto de Vasconcelos Lanza
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 17/10118-0 - Study and application of electrochemical technology for the analysis and degradation of endocrine interferents: materials, sensors, processes and scientific dissemination
Grantee:Marcos Roberto de Vasconcelos Lanza
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 22/04058-2 - Photoelectrocatalytic degradation of pollutants (bisphenol-A, sulfamerazine, and 2,4-D) using H2O2 electrogenerated in carbonaceous matrices obtained from sustainable sources
Grantee:Nicolas Perciani de Moraes
Support Opportunities: Scholarships in Brazil - Post-Doctoral