Advanced search
Start date
Betweenand


Influence of Choline Chloride on the Phase Equilibria and Partition Performance of Polymer/Polymer Aqueous Biphasic Systems

Full text
Author(s):
Alves, Mariana B. N. ; Lopes, Andre M. ; Santos, Nathalia A. ; Santos-Ebinuma, Valeria C. ; Vicente, Filipa A. ; Pereira, Jorge F. B.
Total Authors: 6
Document type: Journal article
Source: SEPARATIONS; v. 10, n. 10, p. 13-pg., 2023-10-01.
Abstract

A series of polymeric aqueous biphasic systems (ABS) were determined using polyethylene glycol (PEG) and sodium polyacrylate (NaPA) with choline chloride ([Ch]Cl) as an adjuvant. The effect of (i) PEG and NaPA molecular weights, (ii) PEG functionalization, (iii) [Ch]Cl addition (at different concentrations), and (iv) temperature (25, 37 and 50 degrees C) was evaluated through their ability to promote the two-phase separation. The results showed that the polymerization degree and functionalization of PEG polymers exhibit a large influence on the ABS formation, with high molecular weight PEG inducing an increase in the biphasic region. Furthermore, the addition of small amount (1-5 wt%) of [Ch]Cl also increased the liquid-liquid demixing. Temperature and the increase in the NaPA molecular weight did not influence the ABS formation ability. Finally, the partition performance of PEG/NaPA + [Ch]Cl ABS was evaluated using caffeine as a model compound. Unlike the ABS formation trend, NaPAs molecular weight significantly influenced the partitioning, which was strengthened when using NaPA-8000. Moreover, the incorporation of [Ch]Cl facilitated an inversion in the partitioning behavior of caffeine, thereby emphasizing the remarkable partitioning tailoring potential exhibited by these systems. Overall, all systems seem to be promising alternatives for the effective extraction, purification and/or concentration of different value-added biomolecules. (AU)

FAPESP's process: 16/23776-2 - Multi-User Equipment approved in grant 14/01580-3: counter current chromatography
Grantee:Valéria de Carvalho Santos Ebinuma
Support Opportunities: Multi-user Equipment Program
FAPESP's process: 14/01580-3 - Biotechnological process for the development of new natural colorants from microorganisms for industrial application
Grantee:Valéria de Carvalho Santos Ebinuma
Support Opportunities: Research Grants - Young Investigators Grants
FAPESP's process: 18/10799-0 - Combinatorial therapy using polymersomes decorated with transferrin and incorporated into chitosan hydrogels as smart drug delivery systems for melanoma tumor cells
Grantee:André Moreni Lopes
Support Opportunities: Scholarships in Brazil - Young Researchers
FAPESP's process: 14/16424-7 - Optimization and scale-up of liquid-liquid extraction process with ionic liquids (ILs) as a sustainable tool for the separation of the anti-leukemia biopharmaceutical L-asparaginase (ASPase)
Grantee:Jorge Pereira
Support Opportunities: Research Grants - Young Investigators Grants
FAPESP's process: 21/06686-8 - Biotechnological process for the development of natural colorants from microbial sources for industrial application: phase II
Grantee:Valéria de Carvalho Santos Ebinuma
Support Opportunities: Program for Research on Bioenergy (BIOEN) - Young Investigators Grants - Phase 2
FAPESP's process: 17/10789-1 - Combinatorial therapy using polymersomes decorated with transferrin and incorporated into chitosan hydrogels as smart drug delivery systems for melanoma tumor cells
Grantee:André Moreni Lopes
Support Opportunities: Research Grants - Young Investigators Grants