Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Influence of cell size on volume calculation using digital terrain models: A case of coastal dune fields

Full text
Author(s):
Grohmann, Carlos H. [1] ; Sawakuchi, Andre O. [2]
Total Authors: 2
Affiliation:
[1] Univ Sao Paulo. Inst Geosci
[2] Univ Sao Paulo. Inst Geosci
Total Affiliations: 2
Document type: Journal article
Source: Geomorphology; v. 180, p. 130-136, JAN 1 2013.
Web of Science Citations: 14
Abstract

In this work, we analyze how variation in cell size influences the volume calculated from digital terrain models (DTMs) derived from a LiDAR (light detection and ranging) survey in two coastal Late Holocene dune fields in southern Brazil. Cell size varied from 1 to 100 m. RMSE (root mean square error) of the resampled DTMs from the original LiDAR (with 0.5 m resolution) increases linearly with cell size, while R-2 (coefficient of determination) decreases following a second-order trend. The volume does not show simple linear or exponential behavior, but fluctuates with positive and negative deviations from the original DIM. This can be explained by a random factor in the position of the cell with regard to landforms and a relationship between cell and landform size, wherein a small change in cell size can lead to an under- or overestimation of volume. The ASTER GDEM (global digital elevation model) and X-SAR SRTM (Shuttle Radar Topography Mission) 1 `' digital elevation models (DEMs) were not considered viable volume sources due to large deviations from the reference data, either as a consequence of noise in the SRTM X-SAR data or lack of bias elevation correction to a common reference base in the GDEM processing chain. Volumes from a 3-arcsec SIR-C SRTM deviated around +/- 5% from the reference data and are considered suitable input for numerical simulations of Quaternary dune field evolution models because these values should be within the expected range of sediment volume changes over hundreds to millions of years. (C) 2012 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 09/17675-5 - Digital terrain analysis and remote sensing applied to geomorphometric characterization of landforms
Grantee:Carlos Henrique Grohmann de Carvalho
Support type: Regular Research Grants