Advanced search
Start date
Betweenand

Development of quantum sensors based on ultracold atoms

Grant number: 13/04162-5
Support type:Research Projects - Thematic Grants
Duration: August 01, 2014 - April 30, 2020
Field of knowledge:Physical Sciences and Mathematics - Physics
Principal Investigator:Philippe Wilhelm Courteille
Grantee:Philippe Wilhelm Courteille
Home Institution: Instituto de Física de São Carlos (IFSC). Universidade de São Paulo (USP). São Carlos , SP, Brazil
Co-Principal Investigators:Celso Jorge Villas-Bôas ; John Weiner
Assoc. researchers:Daniel Varela Magalhães ; Vanderlei Salvador Bagnato
Associated grant(s):18/22402-7 - Nonlinear effects in two-mode cavity QED systems, AP.R
18/03934-8 - Workshop on collective scattering of light 2018, AR.BR
15/50422-4 - 123: dimensionality and cooperativity, AP.R
Associated scholarship(s):18/10813-2 - Quantum scattering of light and entanglement in cold atomic clouds, BP.PD
18/02301-1 - A dual sensor for metrology and gravimetry, BP.PD
17/19848-0 - Development of quantum sensors with ultracold atoms, BP.IC
+ associated scholarships 17/13250-6 - Many-body non-classical signatures in cold atoms fluorescence, BP.PD
16/16598-0 - A dual sensor for metrology and gravimetry, BP.PD
16/23874-4 - Interaction between cold atoms and evanescent light waves, BP.PD
15/21194-3 - Interaction between atoms and metamaterials: Purcell effect and effective medium theories, BP.PD
14/12952-9 - Continuous monitoring of Bloch oscillations of ultracold atoms for application in gravimetry, BP.PD
14/17688-8 - Development of a continuously working gravity sensor, BP.IC - associated scholarships

Abstract

This proposal aims at turning quantum sensor technology into reality. Ahead of the anticipated quantum revolution in commercial applications, the proposal will set up a research consortium working on two specific areas of research: (i) Analysis and implementation of new ideas for quantum sensors based on cold atoms interacting with optical cavities and investigations for the first dual-use of sensors for metrology and gravitational interferometry with potentially new applications; (ii) demonstration of new techniques and strategies for miniaturization and simplification of quantum sensors based on atoms trapped in plasmonic nanopotentials. The realized systems will allow studies of new regimes of quantum electrodynamics in cavities and evanescent waves. (AU)

Articles published in Pesquisa FAPESP Magazine about the research grant:
Quantum acceleration 
Quantum acceleration 

Scientific publications (19)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
DE ASSIS, ROGERIO J.; DE MENDONCA, TAYSA M.; VILLAS-BOAS, CELSO J.; DE SOUZA, ALEXANDRE M.; SARTHOUR, ROBERTO S.; OLIVEIRA, IVAN S.; DE ALMEIDA, NORTON G. Efficiency of a Quantum Otto Heat Engine Operating under a Reservoir at Effective Negative Temperatures. Physical Review Letters, v. 122, n. 24 JUN 19 2019. Web of Science Citations: 3.
SUAREZ, ELMER; AUWAERTER, DAVID; ARRUDA, TIAGO J.; BACHELARD, ROMAIN; COURTEILLE, PHILIPPE W.; ZIMMERMANN, CLAUS; SLAMA, SEBASTIAN. Photon-antibunching in the fluorescence of statistical ensembles of emitters at an optical nanofiber-tip. NEW JOURNAL OF PHYSICS, v. 21, MAR 29 2019. Web of Science Citations: 1.
DE ASSIS, R. J.; VILLAS-BOAS, C. J.; DE ALMEIDA, N. G. Feasible platform to study negative temperatures. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, v. 52, n. 6 MAR 28 2019. Web of Science Citations: 1.
VILLAS-BOAS, CELSO J.; ROSSATTO, DANIEL Z. Multiphoton Jaynes-Cummings Model: Arbitrary Rotations in Fock Space and Quantum Filters. Physical Review Letters, v. 122, n. 12 MAR 28 2019. Web of Science Citations: 1.
ARRUDA, TIAGO J.; BACHELARD, ROMAIN; WEINER, JOHN; COURTEILLE, PHILIPPE W. Tunable Fano resonances in the decay rates of a pointlike emitter near a graphene-coated nanowire. Physical Review B, v. 98, n. 24 DEC 26 2018. Web of Science Citations: 2.
MORIYA, P. H.; ARAUJO, M. O.; TODAO, F.; HEMMERLING, M.; KESSLER, H.; SHIOZAKI, R. F.; CELISTRINO TEIXEIRA, R.; COURTEILLE, PH W. Comparison between 403 nm and 497 nm repumping schemes for strontium magneto-optical traps. JOURNAL OF PHYSICS COMMUNICATIONS, v. 2, n. 12 DEC 2018. Web of Science Citations: 1.
OLIVEIRA, R. R.; BORGES, H. S.; SOUZA, J. A.; VILLAS-BOAS, C. J. A multitasking device based on electromagnetically induced transparency in optical cavities. QUANTUM INFORMATION PROCESSING, v. 17, n. 11 NOV 2018. Web of Science Citations: 0.
DINIZ, E. C.; ROSSATTO, D. Z.; VILLAS-BOAS, C. J. Two-mode squeezing operator in circuit QED. QUANTUM INFORMATION PROCESSING, v. 17, n. 8 AUG 2018. Web of Science Citations: 0.
DINIZ, E. C.; BORGES, H. S.; VILLAS-BOAS, C. J. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings. Physical Review A, v. 97, n. 4 APR 19 2018. Web of Science Citations: 2.
BORGES, HALYNE S.; ROSSATTO, DANIEL Z.; LUIZ, FABRICIO S.; VILLAS-BOAS, CELSO J. Heralded entangling quantum gate via cavity-assisted photon scattering. Physical Review A, v. 97, n. 1 JAN 18 2018. Web of Science Citations: 3.
ARRUDA, TIAGO J.; BACHELARD, ROMAIN; WEINER, JOHN; SLAMA, SEBASTIAN; COURTEILLE, PHILIPPE W. Fano resonances and fluorescence enhancement of a dipole emitter near a plasmonic nanoshell. Physical Review A, v. 96, n. 4 OCT 30 2017. Web of Science Citations: 4.
BORGES, H. S.; OLIVEIRA, M. H.; VILLAS-BOAS, C. J. Influence of the asymmetric excited state decay on coherent population trapping. SCIENTIFIC REPORTS, v. 7, AUG 2 2017. Web of Science Citations: 3.
ROSSATTO, DANIEL Z.; VILLAS-BOAS, CELSO J.; SANZ, MIKEL; SOLANO, ENRIQUE. Spectral classification of coupling regimes in the quantum Rabi model. Physical Review A, v. 96, n. 1 JUL 24 2017. Web of Science Citations: 26.
DE ASSIS, R. J.; VILLAS-BOAS, C. J.; DE ALMEIDA, N. G. Negative response with an optical cavity and traveling wave fields. Physical Review A, v. 96, n. 1 JUL 12 2017. Web of Science Citations: 0.
BORGES, HALYNE S.; VILLAS-BOAS, CELSO J. Quantum PHASE gate based on electromagnetically induced transparency in optical cavities. Physical Review A, v. 94, n. 5 NOV 30 2016. Web of Science Citations: 12.
COSTA, D.; DE ALMEIDA, N. G.; VILLAS-BOAS, C. J. Secure quantum communication using classical correlated channel. QUANTUM INFORMATION PROCESSING, v. 15, n. 10, p. 4303-4311, OCT 2016. Web of Science Citations: 6.
ROSSATTO, D. Z.; VILLAS-BOAS, C. J. Relaxation time for monitoring the quantumness of an intense cavity field. Physical Review A, v. 94, n. 3 SEP 12 2016. Web of Science Citations: 0.
VILLAS-BOAS, C. J.; CARDOSO, W. B.; AVELAR, A. T.; XUEREB, A.; DE ALMEIDA, N. G. Does ``cooling by heating{''} protect quantum correlations?. QUANTUM INFORMATION PROCESSING, v. 15, n. 5, p. 2021-2032, MAY 2016. Web of Science Citations: 1.
SOUZA, J. A.; CABRAL, L.; OLIVEIRA, R. R.; VILLAS-BOAS, C. J. Electromagnetically-induced-transparency-related phenomena and their mechanical analogs. Physical Review A, v. 92, n. 2 AUG 11 2015. Web of Science Citations: 17.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.