Advanced search
Start date
Betweenand

Study of Trichoderma harzianum genomic regions associated to the control of the expression of the enzymes involved in the degradation of biomass

Abstract

The study of the constitution of the genome and gene expression regulation of activities of the fungus Trichoderma harzianum provide important information about the genetic mechanisms of biomass degradation that the fungus uses, information that could be used for other species of filamentous fungi with potential for biodegradation. In this way it is proposed in this project the analysis of genomic regions of Trichoderma harzianum involved in cellulose and hemicellulose degradation and the study of genes and genomic sequences related to the regulation and gene expression of enzymes that promote degradation of lignocellulosic compounds. Previous studies from our group determined the fungus transcriptome in biodegradation conditions through next generation sequencing, annotation of genes and determination of gene expression levels related to degradation, especially of cellulosic and hemicellulose fractions. Group Recent results obtained by sequencing the clones BACs (Bacterial Artificial Chromosome) determined the existence of genomic regions containing groups of genes involved in the degradation of biomass as well as their likely accessory genes and their regulatory sequences responsible for its transcription. The extent of the studies associated with the results recently obtained by our group will bring great impact on the findings of the regulation and expression of genes responsible for biodegradation in T. harzianum. In this way, the next step is the analysis and determination of the regulatory mechanisms of gene expression, proposed in this project. For the study aims to carry out the fermentation of other strains of T. harzianum (CBMAI CBMAI 0020 and 0179) and Trichoderma reesei (CBMAI 711), determine the transcriptome and the exoproteoma of fermentation. Then, determine the potentially expressed genes involved in degradation reactions by analysis of the overall transcript and analyzing the genomic structure (sequences, genes and motifs) present in regions of the genome of T. harzianum IOC3844 compared with the strains CBMAI 0020, CBMAI 0179 and T. reesei. This analysis will be conducted through annotation of BAC sequences previously selected from the existing BACs library in the laboratory (for IOC3844 lineage) and two other small libraries to be built for CBMAI 0020 and CBMAI lines 0179. Thus, for analyzing the differences in expression between the genes, proteins present in exoproteoma and transcriptome profile of the different strains is expected to identify elements in the BAC sequences from the three different strains which may account for the difference in gene expression. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Modified enzyme can increase second-generation ethanol production 
Mechanisms of hydrolytic enzyme production by fungi are elucidated 
Articles published in other media outlets (26 total):
More itemsLess items
TV UOL: Fungo aumenta em 45% produtividade do etanol (10/May/2019)
AgroAlimentando: Una enzima modificada puede incrementar la producción de etanol de segunda generación (01/Jul/2019)
Advanced Biofuels USA: Modified Enzyme Can Increase Second-Generation Ethanol Production (19/Jun/2019)
Biofuels Digest (EUA): Brazilian researchers find Amazonian fungus that produces key enzyme for ethanol production (18/Jun/2019)
Science and Technology Research News (EUA): Modified Enzyme Can Increase Second-Generation Ethanol Production (18/Jun/2019)
GuideChem (China): Modified enzyme can increase second-generation ethanol production (18/Jun/2019)
Phys.Org (Reino Unido): Modified enzyme can increase second-generation ethanol production (17/Jun/2019)
R&D Magazine (EUA) online: Modified enzyme can increase second-generation ethanol production (17/Jun/2019)
Chaali: The modified enzyme may increase the production of second-generation ethanol (17/Jun/2019)
Revolution-Green: Modified enzyme can increase second-generation ethanol production (17/Jun/2019)
TechaPeek: Modified enzyme can increase second-generation ethanol production (16/Jun/2019)
Green Car Congress (EUA): Modified enzyme can increase second-generation ethanol production (15/Jun/2019)
Chinese Academy of Sciences - Marine Science and Technology Information Network System (China): Modified enzyme can increase second-generation ethanol production (15/Jun/2019)
Environmental News Network (EUA): Modified Enzyme Can Increase Second-Generation Ethanol Production (14/Jun/2019)
Bioengineer (Reino Unido): Modified enzyme can increase second-generation ethanol production (14/Jun/2019)
Health Medicine Network (EUA): Modified enzyme can increase second-generation ethanol production (14/Jun/2019)
Science Codex: Modified enzyme can increase second-generation ethanol production (14/Jun/2019)
Scienmag Science Magazine (Reino Unido): Modified enzyme can increase second-generation ethanol production (14/Jun/2019)
Brightsurf: Modified enzyme can increase second-generation ethanol production (14/Jun/2019)
7thSpace: Modified enzyme can increase second-generation ethanol production (14/Jun/2019)
Deuxieme (Holanda): Modified enzyme can increase second-generation ethanol production (14/Jun/2019)
Energías Renovables (Espanha) online: Modifican genéticamente una enzima para que tenga una eficiencia catalítica un 300% mayor para producir etanol (13/Jun/2019)
Bioeconomia (Argentina): Una enzima modificada puede incrementar la producción de etanol de segunda generación (13/Jun/2019)
NCYT Amazings (Espanha): Una enzima modificada puede incrementar la producción de etanol de segunda generación (11/Jun/2019)
Portal Caña (Argentina): Investigación: una enzima modificada puede incrementar la producción de etanol de segunda generación (11/Jun/2019)
Infomediatico: Una enzima modificada puede incrementar la producción de etanol de segunda generación (11/Jun/2019)

Scientific publications (5)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
FERREIRA FILHO, JAIRE A.; HORTA, MARIA AUGUSTA C.; DOS SANTOS, CLELTON A.; ALMEIDA, DEBORAH A.; MURAD, NATALIA F.; MENDES, JULIANO S.; SFORCA, DANILO A.; SILVA, CLAUDIO BENICIO C.; CRUCELLO, ALINE; DE SOUZA, ANETE P. ``Integrative genomic analysis of the bioprospection of regulators and accessory enzymes associated with cellulose degradation in a filamentous fungus (Trichoderma harzianum){''}. BMC Genomics, v. 21, n. 1 NOV 2 2020. Web of Science Citations: 0.
SANTOS, CLELTON A.; MORAIS, MARIANA A. B.; TERRETT, OLIVER M.; LYCZAKOWSKI, JAN J.; ZANPHORLIN, LETICIA M.; FERREIRA, JAIRE A.; TONOLI, CELISA C. C.; MURAKAMI, MARIO T.; DUPREE, PAUL; SOUZA, ANETE P. An engineered GH1 ss-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials. SCIENTIFIC REPORTS, v. 9, MAR 20 2019. Web of Science Citations: 2.
CRIVELENTE HORTA, MARIA AUGUSTA; FERREIRA FILHO, JAIRE ALVES; MURAD, NATALIA FARAJ; SANTOS, EIDY DE OLIVEIRA; DOS SANTOS, CLELTON APARECIDO; MENDES, JULIANO SALES; BRANDAO, MARCELO MENDES; AZZONI, SINDELIA FREITAS; DE SOUZA, ANETE PEREIRA. Network of proteins, enzymes and genes linked to biomass degradation shared by Trichoderma species. SCIENTIFIC REPORTS, v. 8, JAN 22 2018. Web of Science Citations: 5.
FERREIRA FILHO, JAIRE ALVES; CRIVELENTE HORTA, MARIA AUGUSTA; BELOTI, LILIAN LUZIA; DOS SANTOS, CLELTON APARECIDO; DE SOUZA, ANETE PEREIRA. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry. BMC Genomics, v. 18, OCT 12 2017. Web of Science Citations: 4.
SANTOS, CLELTON A.; FERREIRA-FILHO, JAIRE A.; O'DONOVAN, ANTHONIA; GUPTA, VIJAI K.; TUOHY, MARIA G.; SOUZA, ANETE P. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microbial Cell Factories, v. 16, MAY 16 2017. Web of Science Citations: 4.
Academic Publications
(References retrieved automatically from State of São Paulo Research Institutions)
SOUZA, Anete Pereira de. . 2019. Doctoral Thesis - Universidade Estadual de Campinas, Instituto de Biologia.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.