| Grant number: | 17/24201-6 |
| Support Opportunities: | Regular Research Grants |
| Start date: | April 01, 2018 |
| End date: | March 31, 2020 |
| Field of knowledge: | Engineering - Electrical Engineering - Electrical, Magnetic and Electronic Measurements, Instrumentation |
| Principal Investigator: | Marcelo Mulato |
| Grantee: | Marcelo Mulato |
| Host Institution: | Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP). Universidade de São Paulo (USP). Ribeirão Preto , SP, Brazil |
| City of the host institution: | Ribeirão Preto |
| Associated researchers: | Marina Ribeiro Batistuti Sawazaki ; Pedro Miguel de Lemos Correia Estrela |
| Associated research grant(s): | 18/22155-0 - Dendritic cell interactions for early dengue virus detection and disease understanding, AP.R SPRINT |
Abstract
The development of biosensors has been continuously growing every year due tothe possibility of fast and accurate detection of a wide variety of target moleculesor biomarkers, especially in the medical and diagnostic areas. Miniaturization ofthese devices will lead to less invasive testing and reduction of sample volume. Thisproject aims at the study and development of microelectronic biosensors mainlyusing FTO, ITO and gold surfaces modified with polymers, carbon nanostructuresand self-assembled monolayers. Modifications with polymers such as polyanilineallow the immobilization of enzymes and antibodies to detect glucose, lactateand pyruvate. Carbon nanostructures such as graphene and nanotubes allow theimmobilization of enzymes and oligonucleotides. And the gold surfaces can bemodified with polymers as well as with self-assembled monolayers allowing differentmethods of oligonucleotide immobilization, including microRNA and aptamers.The development and optimization of these different platforms, as well as thedetection of the analytes of interest, are based on potentiometric techniques (such aselectrochemical impedance spectroscopy, and extended-gate fieldeffect transistors),piezoelectric (quartz crystal microbalance) and optical methods (through reflectancechange of the polymers after detection). As an innovation, this project startsthe multiplex platform to detect different biomarkers at the same time. Thus, itis expected that, in the end, a further step will be taken in the development ofmicroelectronic biosensors aiming at large-scale medical application, low cost andlow limits of detection. (AU)
| Articles published in Agência FAPESP Newsletter about the research grant: |
| More itemsLess items |
| TITULO |
| Articles published in other media outlets ( ): |
| More itemsLess items |
| VEICULO: TITULO (DATA) |
| VEICULO: TITULO (DATA) |