Advanced search
Start date
Betweenand


Development and application of graphite and polyurethane screen-printed composite electrodes

Full text
Author(s):
Thalita Rocha Saciloto
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Química de São Carlos (IQSC/BT)
Defense date:
Examining board members:
Eder Tadeu Gomes Cavalheiro; Orlando Fatibello Filho; Sergio Antonio Spinola Machado; Maria Del Pilar Taboada Sotomayor
Advisor: Eder Tadeu Gomes Cavalheiro
Abstract

A method for the fabrication of a graphite polyurethane composite based screen printed electrodes (EIGPU) was proposed by developing a ink and a imprinting procedure after optimizing parameters such as ink composition 60% graphite and 40% polyurethane (m/m), nature and quantity of solvent, dimensions of the electrode set, number of ink layers, deepness of the adhesive mask and nature of the insulating that defines the active electrode area and the electrical contacts. Procedures for activating the electrode surface, by mechanically compressing the ink followed by an electrochemical treatment of the surface were also developed. The results of this phase were evaluated using K3[Fe(CN)6] as an electrochemical probe. Than the EIGPU was evaluated regarding its potentialities for the determination of analytes with pharmacological interest using paracetamola (APAP) and its mixturesb with caffeine (CAF) in pharmaceutical formulations (LOD=0,81a, 0,84b(APAP), 1,6b(CAF) µmol L-1), environmental relevance as metal ions Zn2+, Pb2+, Cu2+ e Hg2+ determined simultaneously in ethanol fuel samples (LOD=300, 65, 30, 46 nmol L-1, respectively) and biologically important as epinephrine (EP) contained in artificial cerebro-spinal fluid. (LOD=42,8 e 768 nmol L-1, for DPV e SWV, respectively).These applications were achieved by means of Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV), Square Wave Voltammetry (SWV) and Differential Pulse Anodic Stripping Voltammetry (DPASV). In the determination of the metal ions in ethanol fuel, the electrodes were modified with SBA-15 silica organofunctionalized with benzothiazol-2-thiol. The composities were prepared by substituting corresponding amounts of graphite powder in order to have 5% (m/m) of the modifier in the final device. Before performing the analysis several parameters were optimized for each case for each technique before measuring the analytical curves. After, the EIGPU was used in the determination of the different analytes in the chosen matrices. The amount of analytes present in the samples was determined using addition method in triplicate. The results were compared with those obtained using high performance liquid chromatography (HPLC) and Atomic Absorption Spectrocopy (AAS), as comparision methods. (AU)

FAPESP's process: 10/05913-6 - Development and application of screen printed electrodes based on graphite and polyurethane composites
Grantee:Thalita Rocha Saciloto
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)