Advanced search
Start date
Betweenand


Meat and heterocyclic amines intake as risk factors for cancer

Full text
Author(s):
Aline Martins de Carvalho
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Saúde Pública (FSP/CIR)
Defense date:
Examining board members:
Dirce Maria Lobo Marchioni; Paulo Andrade Lotufo; Ana Paula de Melo Loureiro; Marcelo Macedo Rogero; Sandra Roberta Gouvea Ferreira Vivolo
Advisor: Dirce Maria Lobo Marchioni
Abstract

Introduction. The excessive meat intake, especially red and processed meat, has been linked to chronic diseases, especially cancer. One of the reasons for that is the cooking process at high temperatures that can form heterocyclic amines (HCA). During HCA metabolism, reactive species can be formed, which can cause oxidative stress and DNA damage. However, people can show different answers to the same food intake, increasing or decreasing the risk of diseases. The DNA code can be one of the causes of this between-person variations. Objective. To investigate the association between meat/heterocyclic amine intake with oxidative stress and DNA damage, considering polymorphism, demographic and life style factors among population of São Paulo city. Methods. Information on food intake, genetics, biochemical, and lifestyle was obtained from a representative, multistage probability-based cross-sectional study titled Health Survey for Sao Paulo (ISA-Capital). Meat and heterocyclic amine intake was estimated by a 24-hour dietary recall complemented by a detailed questionnaire with preferences of cooking methods and level of doneness for meats. The salt method was used for DNA extraction and real time PCR to identify the following single nucleotide polymorphisms: CYP1A1 (rs1048943), CYP1A2 (rs762551, rs35694136), CYP1B1 (rs1056836, rs10012), NAT2 (rs1208, rs1041983, rs1799929, rs1801280, rs1799931, rs1799930, rs1801279), NAT1 (rs4986782, rs5030839, rs56379106, rs56318881, rs6586714), SULT1A1 (rs928286), UGT1A9 (rs3832043), SOD2 (rs4880), CAT (rs7943316), GSTA1 (rs3957357), GSTP1 (rs1695), GSTM1 and GSTT1 (null or not). We used malondialdehyde (MDA) concentration in plasma to estimated oxidative stress, and 8-OHdG concentration in plasma to estimate DNA damage. Analyses were performed using multivariate logistic and linear regressions adjusted for smoking, sex, age, body mass index, energy intake, fruit intake, smoking and physical activity. Results. Mean HCA intake was 437ng/day and beef was the meat that contributed more to HCA. Participants who consumed grilled beef very well-done presented more MDA concentration than other participants. We found significant association between heterocyclic amine intake with oxidative stress and DNA damage. Participants who consumed high levels of heterocyclic amines showed higher odds to show high MDA concentration (OR=1.17; P=0.04) and high 8-OHdG concentration (=1.62; P=0.04). These associations could be modified by individual genetic characteristics. Polymorphisms in genes that codify NAT2 and CYP1B1 detoxification enzymes interacted with HCA intake, decreasing oxidative stress. Conclusions. The high heterocyclic amine intake contributed to increase oxidative stress independently of lifestyle and demographic factors, increasing risk of chronic diseases. These relationships can be modified by genetic polymorphisms. (AU)

FAPESP's process: 12/10965-0 - Meat and heterocyclic amines intake, relationship with biomarkers for exposure and susceptibility to cancer in ISA-Capital study
Grantee:Aline Martins de Carvalho
Support Opportunities: Scholarships in Brazil - Doctorate