Advanced search
Start date
Betweenand


Influence of polytetrafluorethylene (PTFE) added to acrylic resin on its physical and mechanical properties and microorganism adherence on acrylic resin

Full text
Author(s):
Fabiana Gouveia Straioto
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Odontologia de Piracicaba
Defense date:
Examining board members:
Altair Antoninha Del Bel Cury; Fernanda Faot; Rosemary Sadami Arai Shinkai; Rafael Leonardo Xediek Consani; Renata Cunha Matheus Rodrigues Garcia
Advisor: Altair Antoninha Del Bel Cury; Alfredo Júlio Fernandes Neto
Abstract

Acrylic resins have been widely used in Dentistry, especially polymers of poly (methyl methacrylate) for fabricating dentures. This material has as advantages stable color and optical properties, satisfactory esthetic and dimensional stability, it is easy to be processed, and its physical properties have been proven adequate for dental applications. However, as disadvantage acrylic resins surface is susceptible to adherence and biofilm development of oral microorganism, such as fungi and bacteria. Microorganism's adherence is the first step to biofilm development, and it is related to pathogenic condition, leading to denture stomatitis. Recently, it had been proposed addition of modifiers to acrylic resin composition that could be able to improve its surface properties, and consequently controlling microorganisms' adherence. However, this change in composition of acrylic resin should not compromise its physical properties. Polytetrafluorethylene has been used as modifiers to fabricate medical devices such as stents and catheters because it is a biocompatible material, high resistance to chemical reagents and low surface energy. Thus, the aim of this study was to evaluate the physical properties, surface characteristics, adherence of microorganisms and biofilm formation of two acrylic resins, one polymerized by long and other polymerized by short cycle, with 2% (w/w) of PTFE added and to compare with the same resins with no PTFE added. For this, three studies were conducted: 1 - Physical properties of acrylic resins - specimens were prepared for each acrylic resin according to the ISO standard 1567:1999 (n=10) for each mechanical test: surface hardness, impact strength, flexural strength and flexural modulus and peak load were calculated; 2 - Characteristics of acrylic resin surface and adherence of Candida albicans: rectangular specimens (n=10) of each resin were prepared and evaluated for surface roughness, contact angle, surface free energy and C.albicans adherence. Adhered cells were expressed in colony forming units per surface area; 3- Biofilm formed on acrylic resins and its composition: acrylic resin discs (n=6) were used to Streptococcus mutans UA 159, Streptococcus sanguinis ATCC 10556 and Actinomyces naeslundii ATCC 12104 biofilm formation. Polysaccharide composition and colony forming units were compared. For both three studies the results of were analyzed by Two-Way ANOVA and Tukey test (P<.05). The results showed no statistical significant differences for surface hardness (P>0.05). However, impact and flexural strengths values for experimental groups, with PTFE added were significantly lower (P<.05) when compared to the groups with no PTFE added. The flexural modulus values of acrylic resin containing 2% PTFE polymerized by long cycle was higher than other resins (P<0.05). No statistical differences were found for roughness, contact angle, surface free energy (P>.05); there was a reduction trend in C. albicans adherence in acrylic resin with PTFE added, but it was not statistically significant. Regarding, the formation and composition of polysaccharide matrix the results showed no differences among the acrylic resin groups (P>0.05). The results showed that the 2% of PTFEE incorporated to acrylic resins was not enough to affect the mechanical properties, adherence and composition of biofilm. (AU)