Advanced search
Start date
Betweenand


Study of the behavior of tunnel field effect transistors (TFET) operating at different temperatures.

Full text
Author(s):
Caio Cesar Mendes Bordallo
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Escola Politécnica
Defense date:
Examining board members:
Paula Ghedini Der Agopian; Marcello Bellodi; Helder Vinicius Avanço Galeti; Roberto Koji Onmori; Sebastião Gomes dos Santos Filho
Advisor: Paula Ghedini Der Agopian; João Antonio Martino
Abstract

In this work, initially it was studied Silicon (Si) n type tunnel field effects transistors (TFET) in nanowire structures (NW-TFET), analyzing the diameter reduction effect of the nanowires, from 167 nm to 15 nm, using experimental measurements and numerical simulations. For diameters higher than 30 nm, the devices are less influenced by the diameter reduction. For diameters lower than 30 nm, decreasing the diameter, band-to-band tunneling (BTBT) start to become the dominant mechanism, increasing the normalized drain current. Reducing the diameter, in low conduction, the most of the junction becomes dominated by BTBT, increasing the transistor efficiency due to the better electrostatic coupling, reducing the subthreshold swing (SS). The analysis of this nTFETs at different temperatures (from 10 K to 423 K) showed that at high temperatures both the on and the off state current (ION and IOFF) of these NW-TFETs have raised, degrading SS, and consequently the efficiency at low conduction. In order to improve ION, which is very low in pure Si nTFETs, experimental devices using source made by Ge and Si0.73Ge0.27 was studied. The increase of the Ge concentration in the source reduces the bandgap results in higher BTBT current. This high BTBT current also lead the transconductance (gm) and the intrinsic voltage gain (AV) to increase. To further improve the TFETs performance, new devices made of InGaAs with ring layout, with channel length of 5 µm and channel width of 400 µm was studied, using experimental and simulated data. The use of InGaAs generates a large increase of ION due to its low bandgap, enabling to reach values of SS near 60 mV/dec, much steeper than the 200mV/dec obtained on Si nTFETs. These InGaAs nTFETs have presented high AV (~50 dB), even at low bias, being promising devices in low power low voltage applications. When increasing the In concentration in the InXGa1-XAs TFET the bandgap is reduced, improving the BTBT current. The BTBT raise leads both gm and the output conductance (gD) to increase, improving AV for high VGS bias and degrading it at low VGS bias. The reduction of the HfO2 thickness, from 3 nm to 2 nm, have resulted in improvement all devices due to the better electrostatic coupling, where the In0.53Ga0.47As device have presented SS of 56mV/dec. As the temperature have more influence in gD than gm, AV is improved at low temperatures. The use of gas phase Zn diffusion at the source doping, instead of solid source Zn diffusion, have increased ION and improved SS. The possibly reason to this behavior is the higher abruptness of the source/channel junction when using gas phase Zn diffusion. An optimized device can be obtained using a device with In0,7Ga0,3As with the source diffusion made by gas phase, for devices to be used in digital applications, or with the source diffusion made by solid source, for devices to be used in analog applications. Both diffusion process made at 520 ºC, using 2 nm of HfO2 in the gate stack. (AU)

FAPESP's process: 13/22594-0 - Study of tunnel field effect transistors behavior operating at different temperatures
Grantee:Caio Cesar Mendes Bordallo
Support type: Scholarships in Brazil - Doctorate