Advanced search
Start date
Betweenand


Technical feasibility of the use of alcoholic solvents in vegetable oils extraction: physical-chemical characterization of oil, protein fraction functionalities and solvent recovery

Full text
Author(s):
Maria Carolina Capellini
Total Authors: 1
Document type: Doctoral Thesis
Press: Pirassununga.
Institution: Universidade de São Paulo (USP). Faculdade de Zootecnica e Engenharia de Alimentos (FZE/BT)
Defense date:
Examining board members:
Christianne Elisabete da Costa Rodrigues; Rodrigo Corrêa Basso; Eduardo Augusto Caldas Batista; Rosemary Aparecida de Carvalho
Advisor: Christianne Elisabete da Costa Rodrigues
Abstract

During the development of this Ph.D. Thesis, the main objective was to study the technical feasibility of replacing the solvent used in the industrial process of vegetable oils extraction, hexane, by short chain alcohols, ethanol or isopropanol, with different degrees of hydration, which are considered safer due to the hexane high toxicity and flammability. Also, these alcoholic solvents can be partially recovered after the extraction process due to partial miscibility with oil at room temperature. In order to increase the oil extraction yield and add value to the protein-rich defatted meal, sesame seed cake was submitted to the alcoholic extraction process using ethanol or isopropanol, absolute or azeotropic, at temperatures from 50 to 90 °C. Results showed that the hydration of the alcoholic solvent negatively affected the oil extraction efficiency, while the increase in temperature favored this process, with extraction yield values of approximately 98 % being reached for absolute solvents at 90 °C, considering a single stage of contact. The sesame seed cake oil obtained from alcoholic extraction was rich in sesamin, containing approximately 4 g/kg of this compound, regardless of the alcohol hydration and temperature. Absolute isopropanol exhibited the best tocopherol extraction capacity, enabling to obtain sesame seed cake oil with 177 mg/kg of this minor compound. In addition, regardless of the process condition employed, the oil obtained from the alcoholic extraction showed a typical composition of sesame seed oil. Regarding the protein fraction, the use of temperatures ranging from 50 to 80 °C, for all alcoholic solvents studied, did not affect the protein solubility and the thermal stability of the defatted meals. For the rice bran, the low values of solubility index obtained, about 10 %, made the production of protein concentrates unfeasible and, therefore, the impact of the extraction conditions on the functional properties of the defatted meals from the sequential alcoholic extraction of rice bran oil, at 60 and 80 °C, was evaluated. High values of water (4 g/g sample) and oil (3 g / g sample) absorption capacities were obtained, denoting the possibility of applying this material to bakery and meat products, respectively. In addition, it was observed that the alcoholic extraction process did not interfere in the stability of the foams produced, but had a negative influence on the stability of the emulsions. Furthermore, in the solvent recovery study, a subsequent step from the extraction process, phase equilibrium data determined for lipid systems composed of crude sesame seed oil, obtained from industrial mechanical pressing, and alcoholic solvents, at temperatures of 10 to 60 °C, showed that the temperature weakly influenced the mutual solubility of the system components, while the solvent hydration caused a decrease of this solubility, with consequent reduction of the partition coefficient for the oil and free fatty acids. NRTL model parameters adjusted to the experimental data presented an adequate description of the lipid systems behavior, with deviations varying from 0.15 to 0.49 %. In addition, looking for associate the results obtained in the alcoholic extraction of sesame seed cake oil with the liquid-liquid equilibrium data, it was observed that the parameters estimated for the lipid systems containing ethanol and isopropanol were able to adequately predict the contents of soluble solids in the extract phases from the solid-liquid extraction experiments in which Et0 and IPA12 were used as solvents. Moreover, the estimated binary interaction parameters were used to determine the minimum oil:solvent mass ratio in the extract that would allow partial desolventization, due to the phase separation with the reduction of temperature, with values of 1:5 being found for Et0, 1:3 for IPA0 and 1:1 for the more hydrated alcohols, Et6 and IPA12. (AU)

FAPESP's process: 13/13339-6 - Technical feasibility of using alcoholic solvents in vegetable oil extraction: Physical-chemical characterization of oil, functional properties of protein fraction and solvent recovery
Grantee:Maria Carolina Capellini
Support Opportunities: Scholarships in Brazil - Doctorate