Advanced search
Start date
Betweenand


Targeting Kinin-B2 receptors for the treatment of dopaminergic neurodegeneration in an animal mode

Full text
Author(s):
Hellio Danny Nobrega de Souza
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Henning Ulrich; Daniela Sanchez Bassères; Patricia Cristina Baleeiro Beltrao Braga; Alexandre Hiroaki Kihara; Leticia Labriola
Advisor: Henning Ulrich
Abstract

Parkinson\'s disease (PD) is a neurodegenerative disorder partially characterized by the loss of dopaminergic neurons from the nigrostriatal pathway, originated in the substantia nigra with projections to the striatum, which causes several motor deficits. Currently, the most commonly used drug for PD treatment is levodopa. However, it has limited efficacy and induces several side effects. Elucidation of the neuroprotective, proliferative and neuroregenerative effects of bradykinin (BK) in animal models of PD can culminate in cellular replacement of the tissue damaged by 6-hydroxydopamine (6-OHDA). In fact, BK and its receptor have several physiological effects, being classically involved in the control of cardiovascular homeostasis and inflammation. Besides, BK exerts protective effects on nervous system pathophysiology, as observed in stroke models. Several cell types have their signaling pathways associated with the B2 kinin receptor (B2BKR) activation. Previous work from our group showed that BK is involved in differentiation of neural progenitor cells by an autocrine loop that results in activation of B2BKR. The results presented in this thesis show the efficacy of treatment with BK, through B2BKR activation, in animals submitted to nigrostriatal pathway injury induced by 6-OH dopamine. Furthermore, behavioral and histological recoveries of these animals were observed when treated with Captopril®, a potentiator of BK pharmacological effects, and with [Phe8Ψ (CH-NH) Arg9] -BK, a stable agonist of the B2BKR receptor. Thus, we conclude that BK activation of B2BKR triggers neuroregenerative processes in animals submitted to 6- OHDA injury. Recent studies showed that the B2BKR receptor plays an important neuroprotective role in an animal model of Alzheimer\'s disease, which corroboratesour findings. Together, these results contribute to the establishment of the neuroprotective and neuroregenerative actions of BK - an excellent candidate for neural repair therapies. (AU)

FAPESP's process: 12/20685-5 - Role of kinins receptor B2 in therapy of Parkinson's Disease in animal model.
Grantee:Héllio Danny Nóbrega de Souza
Support Opportunities: Scholarships in Brazil - Doctorate