Advanced search
Start date
Betweenand


Analysis, desing and layout of a new voltage regulator circuit topology applied to microprocessors

Full text
Author(s):
Fernando Zampronho Neto
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação
Defense date:
Examining board members:
Sandro Augusto Pavik Haddad; José Alexandre Diniz
Advisor: Jacobus Willibrordus Swart
Abstract

This work aims to study the topology of multi-phase voltage regulators applied to microprocessors, where only tiny variations in the supply voltage are allowed, even when facing aggressive current transients. This study consists in the analysis, which describes the advantages and disadvantages of switched voltage regulator topologies, design, simulation, layout and experimental characterization of the proposed regulator. In the design phase, a new approach in sizing the external LC filter is herein described, considering their stray elements, through the introduction of the .non ideality. parameter, or n, which is valid within interval [0,1]. As more as n approaches unity, less parasitic elements the filter will have, easing the choice of the capacitors and inductors commercially available. In addition to this, a new technique applied to voltage feedback topologies is proposed, which consists in adding the output voltage of the frequency compensator to a voltage between two of its internal nodes. With such an approach, the response time of the regulator to load transients decreases. Simulation results show a reduction over 25% in the output voltage ripple using this new approach, when comparing to the traditional solution. The process, simulator and models used in this work are, respectively, AMS H35, PSPICE and Bsim 3v3. The layout of the regulator was edited through Mentor Graphics, and it has an effective area of 0.444mm2. The fabrication in foundry AMS was done by multi-user program of FAPESP. The experimental characterization compares the response time of the regulator in the same conditions of simulation phase. Experimental results indicated a 96,1% reduction in load voltage ripple during transient, when comparing the purposed technique with the traditional solution, validating the excellent performance of the regulator with the new design technique. This work is concluded by emphasizing the reached objectives and main experimental results reached, design difficulties and limitations of the switched-regulator architecture studied (AU)