Advanced search
Start date
Betweenand


Influence of CO2 laser associated to stannous fluoride in the erosion control induced by hydrochloric acid on enamel of primary teeth wear and permeability analysis.

Full text
Author(s):
Cristiane Tomaz Rocha
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Odontologia de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Silmara Aparecida Milori Corona; Luciano Bachmann; Lidiany Karla Azevedo Rodrigues; Sérgio Lima Santiago; Raquel Assed Bezerra da Silva
Advisor: Silmara Aparecida Milori Corona
Abstract

Facing importance and prevalence of erosion in children, mainly due to gastroesophageal reflux and absence of studies evaluating effects of CO2 laser in control erosion induced by hydrochloric acid, the aim of this study was to determine in vitro influence of different CO2 laser powers associated with 0.4% stannous fluoride erosion control induced by hydrochloric acid on enamel of primary teeth by wear and permeability analysis. Sixty primary teeth were used to obtain 120 enamel fragments (3x3 mm). Fragments were flatenned, polished and fixed in resin blocks. Two piece of tapes were placed on the surface, leaving an exposed area 3x1mm2. For the formation of erosion lesions, specimens were submitted to an acid challenge by 4 cycles of 2 minutes each, with 0.01 M hydrochloric acid solution (pH 2). Initial wear analysis was calculated by optical profilometry and used to select 104 specimens. These were randomly assigned into 8 groups according to fluoride application (present-gel 0.4% stannous fluoride and absent-control) and CO2 laser power (no irradiation control, 0.5 W, 1 W, 1.5 W). Half of specimens were submitted to a single fluoride application for 1 min with microbrush. CO2 laser irradiation was performed in a ultrapulsed, 100µs pulse duration at a distance of 4 mm of enamel. After treatments, erosive challenges were performed for 5 successive days using the same protocol described above. Final wear analysis was calculated by optical profilometry. For permeability analysis, specimens were submitted to histochemical coloring method, using copper sulphate and acid rubeanic solutions. It was obtained sections from exposed area which were scanned under light microscopy and evaluated for copper ions penetration in relation to the total thickness of enamel. In each section, five evaluations of copper ions penetration were performed, resulting in fifteen readings per specimen. Data wear analysis were submitted to two-way ANOVA and interaction between factors fluoride application and CO2 laser power was significant (p = 0.046). However, permeability analysis, two-way ANOVA showed no interaction between factors (p = 0.591). Significant effect of CO2 laser power was found (p = 0.037), and 1.5 W power provided an increase of enamel permeability compared to 0.5 W. Correlation between wear and permeability analysis was not significant (p = 0.699). CO2 laser using 1W associated with 0.4% stannous fluoride can be an effective method to erosion control induced by hydrochloric acid on enamel of primary teeth. Permeability analysis showed no synergic effect between 0.4% stannous fluoride application and CO2 laser powers. CO2 laser power of 0.5 W provided the lowest permeability of enamel erosion compared to 1.5 W. Wear analysis showed no correlation with permeability analysis of primary teeth enamel submitted to erosion by hydrochloric acid challenges. (AU)

FAPESP's process: 08/01256-0 - INFLUENCE OF CO2 LASER ASSOCIATED TO A FLUORIDE SOURCE IN THE CONTROL OF DENTAL EROSION IN PRIMARY TOOTH ENAMEL - AN IN VITRO ANALYSIS
Grantee:Cristiane Tomaz Rocha
Support Opportunities: Scholarships in Brazil - Doctorate