Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

White matter abnormalities associate with type and localization of focal epileptogenic lesions

Full text
Campos, Brunno M. [1] ; Coan, Ana C. [1] ; Beltramini, Guilherme C. [2] ; Liu, Min [3] ; Yassuda, Clarissa L. [1] ; Ghizoni, Enrico [1] ; Beaulieu, Christian [3] ; Gross, Donald W. [4] ; Cendes, Fernando [1]
Total Authors: 9
[1] Univ Estadual Campinas, Neuroimaging Lab, Dept Neurol, Campinas, SP - Brazil
[2] Univ Estadual Campinas, Gleb Wataghin Phys Inst, Neurophys Grp, Campinas, SP - Brazil
[3] Univ Alberta, Fac Med & Dent, Dept Biomed Engn, Edmonton, AB - Canada
[4] Univ Alberta, Dept Med, Div Neurol, Fac Med & Dent, Edmonton, AB - Canada
Total Affiliations: 4
Document type: Journal article
Source: Epilepsia; v. 56, n. 1, p. 125-132, JAN 2015.
Web of Science Citations: 23

ObjectiveTo evaluate white matter (WM) integrity of distinct groups of patients with antiepileptic drug (AED)-resistant localization-related epilepsies. MethodsWe used diffusion tensor imaging (DTI) fiber-tractography and voxel-based morphometry (VBM) to investigate differences of WM micro- and macrostructural integrity in patients with different drug-resistant localization-related epilepsies: 17 with temporal lobe epilepsy with magnetic resonance imaging (MRI) signs of hippocampal sclerosis (TLE-HS), 17 with TLE and normal MRI (TLE-NL), 14 with frontal lobe epilepsy and subtle MRI signs of focal cortical dysplasia (FLE-FCD), and 112 healthy controls. We performed fiber-tractography using a semiautomatic deterministic method to yield average fractional anisotropy (FA), axial (AD), and radial (RD) diffusivity ipsilateral and contralateral to the epileptogenic zone of the following tracts based on their functional and anatomic relevance: body of fornix (BoF), body of cingulum (BoC), inferior frontal occipital (IFO), and uncinate fasciculi (UF). In addition, we performed VBM of the WM maps to assess macrostructural integrity differences among groups. ResultsTLE-HS had ipsilateral and contralateral decreased FA and increased RD for all tracts. VBM showed WM alterations mainly in the ipsilateral parahippocampal region and contralateral superior temporal gyrus. FLE-FCD showed bilateral FA decreases only in the BoC and ipsilateral RD increases also in the BoC. VBM showed WM reduction mainly in the ipsilateral precuneus and posterior and anterior cingulum. No significant WM alterations were found in the TLE-NL in DTI or VBM analysis. SignificanceWM abnormalities differ in distinct AED-resistant localization-related epilepsies. The diverse distribution of the WM damage in these patients suggests that the localization of the epileptic networks may play a role in the WM burden. However, the distinct degree of this damage, more accentuated in TLE-HS, also suggests that the underlying cause of the epilepsy is probably an additional factor to explain this WM damage. (AU)

FAPESP's process: 13/07559-3 - BRAINN - The Brazilian Institute of Neuroscience and Neurotechnology
Grantee:Fernando Cendes
Support type: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 13/00099-7 - EEG-fMRI in the pre-operatory evaluation of patients with focal refractory epilepsies
Grantee:Ana Carolina Coan
Support type: Scholarships in Brazil - Post-Doctorate