Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism

Full text
Quilles Junior, Jose Carlos ; Ferrarezi, Ana Lucia ; Borges, Janaina Pires ; Brito, Rafaela Rodrigues ; Gomes, Eleni ; da Silva, Roberto ; Manuel Guisan, Jose ; Boscolo, Mauricio
Total Authors: 8
Document type: Journal article
Source: Bioprocess and Biosystems Engineering; v. 39, n. 12, p. 1933-1943, DEC 2016.
Web of Science Citations: 4

It is known that lipases may have their catalytic properties improved by the action of some salts or by the adsorption on hydrophobic supports. However, what we present in this work is more than that: we evaluate the combination of these two factors of hyperactivation of lipases from Acremonium-like ROG 2.1.9, a study that has not been done so far. This work proves that a synergistic effect occurs when the lipases are immobilized on hydrophobic supports at the presence of sodium chloride and are applied in triacylglycerol hydrolysis. This assay made it possible to achieve the highest hyperactivation of 500 % with the lipases immobilized on Phenyl-Sepharose and applied with 0.1 M of sodium chloride. Besides this positive effect on enzyme activity, the use of these two factors led to the thermal stability increasing of the immobilized lipases. For this derivative, the recovered activity was approximately 85 % after 6 h incubated at 55 A degrees C and 1.0 M of the sodium chloride against 50 % of the same derivative without this salt. Furthermore, others assays were performed to prove the evidences about the synergistic effect, showing a promising method to improve the catalytic properties of the lipases from Acremonium-like ROG 2.1.9. (AU)

FAPESP's process: 13/00530-0 - Immobilization and stabilization of lipases from Candida antarctida: fraction b and its application in biocatalysis
Grantee:José Carlos Quilles Junior
Support type: Scholarships abroad - Research Internship - Master's degree
FAPESP's process: 12/09054-3 - Immobilization of lipases on agarose and chitosan and application in biocatalysis.
Grantee:José Carlos Quilles Junior
Support type: Scholarships in Brazil - Master