Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

A New Sugarcane Cystatin Strongly Binds to Dental Enamel and Reduces Erosion

Full text
Author(s):
Santiago, A. C. ; Khan, Z. N. ; Miguel, M. C. ; Gironda, C. C. ; Soares-Costa, A. ; Pela, V. T. ; Leite, A. L. ; Edwardson, J. M. ; Buzalaf, M. A. R. ; Henrique-Silva, F.
Total Authors: 10
Document type: Journal article
Source: JOURNAL OF DENTAL RESEARCH; v. 96, n. 9, p. 1051-1057, AUG 2017.
Web of Science Citations: 5
Abstract

Cystatin B was recently identified as an acid-resistant protein in acquired enamel pellicle; it could therefore be included in oral products to protect against caries and erosion. However, human recombinant cystatin is very expensive, and alternatives to its use are necessary. Phytocystatins are reversible inhibitors of cysteine peptidases that are found naturally in plants. In plants, they have several biological and physiological functions, such as the regulation of endogenous processes, defense against pathogens, and response to abiotic stress. Previous studies performed by our research group have reported high inhibitory activity and potential agricultural and medical applications of several sugarcane cystatins, including CaneCPI-1, CaneCPI-2, CaneCPI-3, and CaneCPI-4. In the present study, we report the characterization of a novel sugarcane cystatin, named CaneCPI-5. This cystatin was efficiently expressed in Escherichia coli, and inhibitory assays demonstrated that it was a potent inhibitor of human cathepsins B, K, and L (K-i = 6.87, 0.49, and 0.34 nM, respectively). The ability of CaneCPI-5 to bind to dental enamel was evaluated using atomic force microscopy. Its capacity to protect against initial enamel erosion was also tested in vitro via changes in surface hardness. CaneCPI-5 showed a very large force of interaction with enamel (e.g., compared with mucin and casein) and significantly reduced initial enamel erosion. These results suggest that the inclusion of CaneCPIs in dental products might confer protection against enamel erosion. (AU)

FAPESP's process: 98/14138-2 - Center for Structural Molecular Biotechnology
Grantee:Glaucius Oliva
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC