Advanced search
Start date
Betweenand
(Reference retrieved automatically from SciELO through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Soil variables as auxiliary information in spatial prediction of shallow water table levels for estimating recovered water volume

Full text
Author(s):
Lucas Vituri Santarosa [1] ; Rodrigo Lilla Manzione [2]
Total Authors: 2
Affiliation:
[1] Universidade Estadual Paulista. Faculdade de Ciências Agronômicas. Programa de Pós-graduação em Agronomia - Brasil
[2] Universidade Estadual Paulista. Faculdade de Ciências e Engenharia de Tupã - Brasil
Total Affiliations: 2
Document type: Journal article
Source: RBRH; v. 23, 2018-06-18.
Abstract

ABSTRACT Spatial data became increasingly utilized in many scientific fields due to the accessibility of monitoring data from different sources. In the case of hydrological mapping, measurements of external environmental conditions, such as soil, climate, vegetation, are often available in addition to the measurements of water characteristics. An integrated modelling approach capable to incorporate multiple input data sets that may have heterogeneous geometries and other error characteristics can be achieved using geostatistical techniques. In this study, different physical hydric properties of soils extensively sampled and topography were used as auxiliary information for making optimal, point-level inferences of water table depths in forest areas. We used data from 48 wells in the Bauru Aquifer System in the Santa Bárbara Ecological Station (EEcSB), in the municipality of Aguas de Santa Bárbara in São Paulo State, Brazil. Using the resistance of soil to penetration and topography as auxiliary variables helped reduce prediction errors. With the generated maps, it was possible to estimate the volumes of water recovered from the water table in two periods during the monitoring period. These values showed that 30% of the recovered volume would be sufficient for a three-month supply of water for a population of 30,000 inhabitants. Therefore, this raises the possibility of using areas such as the EEcSB as strategic supplies in artificial recharging management. (AU)

FAPESP's process: 16/09737-4 - MODELLING GROUNDWATER SPATIO-TEMPORAL VARIABILITY FROM WATER TABLE MONITORING DATA USING COVARIANCE FUNCTIONS
Grantee:Rodrigo Lilla Manzione
Support type: Regular Research Grants
FAPESP's process: 15/05171-3 - Mapping water table depths of Bauru Aquifer System (BAS) in a environmental protection area at Águas de Santa Barbara/SP - Brazil during the 2014/2015 hydological year
Grantee:Lucas Vituri Santarosa
Support type: Scholarships in Brazil - Master
FAPESP's process: 14/04524-7 - Monitoring water table depths at Bauru Aquifer System in a conservation reserv in Águas de Santa Bárbara, SP - Brazil
Grantee:Rodrigo Lilla Manzione
Support type: Regular Research Grants