Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Firing properties of ventral medullary respiratory neurons in sino-aortic denervated rats

Full text
Amorim, Mateus R. [1] ; Pena, Rodrigo F. O. [2] ; Souza, George M. P. R. [1] ; Bonagamba, Leni G. H. [1] ; Roque, Antonio C. [2] ; Machado, Benedito H. [1]
Total Authors: 6
[1] Univ Sao Paulo, Sch Med Ribeirao Preto, Dept Physiol, BR-14049900 Ribeirao Preto, SP - Brazil
[2] Univ Sao Paulo, Sch Philosophy Sci & Letters Ribeirao Preto, Dept Phys, BR-14040900 Ribeirao Preto, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: Experimental Physiology; v. 104, n. 1, p. 39-49, JAN 2019.
Web of Science Citations: 0

In previous studies, we documented that after sino-aortic denervation (SAD) in rats there are significant changes in the breathing pattern, but no significant changes in sympathetic activity and mean arterial pressure compared with sham-operated rats. However, the neural mechanisms involved in the respiratory changes after SAD and the extent to which they might contribute to the observed normal sympathetic activity and mean arterial pressure remain unclear. Here, we hypothesized that after SAD, rats present with changes in the firing frequency of the ventral medullary inspiratory and post-inspiratory neurons. To test this hypothesis, male Wistar rats underwent SAD or sham surgery and 3 days later were surgically prepared for an in situ experiment. The duration of inspiration significantly increased in SAD rats. During inspiration, the total firing frequency of ramp-inspiratory, pre-inspiratory/inspiratory and late-inspiratory neurons was not different between groups. During post-inspiration, the total firing frequency of post-inspiratory neurons was also not different between groups. Furthermore, the data demonstrate a reduced interburst frequency of pre-inspiratory/inspiratory neurons and an increased long-term variability of late-inspiratory neurons in SAD compared with sham-operated rats. These findings indicate that the SAD-induced prolongation of inspiration was not accompanied by alterations in the total firing frequency of the ventral medullary respiratory neurons, but it was associated with changes in the long-term variability of late-inspiratory neurons. We suggest that the timing imbalance in the respiratory network in SAD rats might contribute to the modulation of presympathetic neurons after removal of baroreceptor afferents. (AU)

FAPESP's process: 13/06077-5 - Changes in the neural networks involved with the generation and control of sympathetic and respiratory activities in different experimental models of hypoxia
Grantee:Benedito Honorio Machado
Support type: Research Projects - Thematic Grants
FAPESP's process: 13/25667-8 - Mechanisms of propagation of epileptiform activity in a large-scale cortical model
Grantee:Rodrigo Felipe de Oliveira Pena
Support type: Scholarships in Brazil - Doctorate (Direct)
FAPESP's process: 13/15195-1 - Electrophysiological characterization of respiratory and presympathetic neurons in the rostral ventrolateral medulla after sinoaortic denervation in rats
Grantee:Mateus Ramos Amorim
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 13/07699-0 - Research, Innovation and Dissemination Center for Neuromathematics - NeuroMat
Grantee:Jefferson Antonio Galves
Support type: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 15/50122-0 - Dynamic phenomena in complex networks: basics and applications
Grantee:Elbert Einstein Nehrer Macau
Support type: Research Projects - Thematic Grants