Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Optimal Operation of Unbalanced Three-Phase Islanded Droop-Based Microgrids

Full text
Author(s):
Vergara, Pedro P. [1] ; Lopez, Juan C. [1] ; Rider, Marcos J. [1] ; da Silva, Luiz C. P. [1]
Total Authors: 4
Affiliation:
[1] Univ Estadual Campinas, Dept Syst & Energy, BR-13083852 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: IEEE TRANSACTIONS ON SMART GRID; v. 10, n. 1, p. 928-940, JAN 2019.
Web of Science Citations: 2
Abstract

This paper presents a new mixed-integer nonlinear programming (MINLP) model for the optimal operation of unbalanced three-phase droop-based microgrids. The proposed MINLP model can be seen as an extension of an optimal power flow for microgrids operating in islanded mode, that aims to minimize the total amount of unsupplied demand and the total distributed generator (DG) generation cost. Since the slack bus concept is not longer valid, the proposed model considers the frequency and voltage magnitude reference as variables. In this case, DCs units operate with droop control to balance the system and provide a frequency and voltage magnitude reference. Additionally, a set of efficient linearizations are introduced in order to approximate the original MINLP problem into a mixed-integer linear programming (MILP) model that can be solved using commercial solvers. The proposed model has been tested in a 25-bus unbalanced three-phase microgrid and a large 124-node grid, considering different operational and time-coupling constraints for the DGs and the battery systems (BSs). Load curtailment and different modes of operation for the wind turbines have also been tested. Finally, an error assessment between the original MINLP and the approximated MILP model has been conducted. (AU)

FAPESP's process: 15/09136-8 - Fault tolerant portfolio optimization in Smart Grid
Grantee:Pedro Pablo Vergara Barrios
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 15/12564-1 - Designing and Implementation of a Self-Healing Scheme for Modern Electrical Distribution Systems
Grantee:Juan Camilo Lopez Amezquita
Support Opportunities: Scholarships in Brazil - Doctorate