Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Interaction network analysis in shear thickening suspensions

Full text
Author(s):
Gameiro, Marcio [1, 2] ; Singh, Abhinendra [3, 4, 5] ; Kondic, Lou [6] ; Mischaikow, Konstantin [1] ; Morris, Jeffrey F. [3, 7]
Total Authors: 5
Affiliation:
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 - USA
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
[3] CUNY City Coll New York, Benjamin Levich Inst, New York, NY 10031 - USA
[4] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 - USA
[5] Univ Chicago, James Franck Inst, Chicago, IL 60637 - USA
[6] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 - USA
[7] CUNY City Coll New York, Dept Chem Engn, New York, NY 10031 - USA
Total Affiliations: 7
Document type: Journal article
Source: PHYSICAL REVIEW FLUIDS; v. 5, n. 3 MAR 23 2020.
Web of Science Citations: 1
Abstract

Dense frictional particulate suspensions in a viscous liquid undergo increasingly strong continuous shear thickening as the solid packing fraction, f, increases above a critical volume fraction, and discontinuous shear thickening is observed for even higher packing fractions. Recent studies have related shear thickening to a transition from mostly lubricated to predominantly frictional contacts with the increase in stress, with the transition determined by overcoming a repulsive force. The rheology and networks of frictional forces from two- and three-dimensional simulations of shear-thickening suspensions are studied. These are analyzed using measures of the topology of the network, including tools of persistent homology. We observe that at low stress, the frictional interaction networks are predominantly quasilinear along the compression axis. With an increase in stress, the force networks become more isotropic, forming loops in addition to chainlike structures. The topological measures of Betti numbers and total persistence provide a compact means of describing the mean properties of the frictional force networks, and provide a link between macroscopic rheology and the microscopic interactions. A total persistence measure describing the significance of loops in the force network structure, as a function of stress and packing fraction, shows behavior similar to that of relative viscosity, and displays a scaling law near the jamming fraction for both two- and three-dimensional systems considered. The total persistence measures for both dimensions are found to be very similar. (AU)

FAPESP's process: 16/08704-5 - Rigorous computations in dynamics
Grantee:Marcio Fuzeto Gameiro
Support Opportunities: Regular Research Grants
FAPESP's process: 16/21032-6 - Analysis of fluid dynamics data via persistent homology
Grantee:Marcio Fuzeto Gameiro
Support Opportunities: Scholarships abroad - Research